Higher differential geometry and symplectic structures

Chenchang Zhu

Mathematisches Institut, Göttingen

Amherst, Gone Fishing, March. 19 2023

Chenchang Zhu (Mathematisches InstitutHigher differential geometry and symplect

Dorothea Schlözer female postdoc program, deadline April 15th

- Source: theorectical physics needs to go to higher dimensions (3+1 dimension). For example, very roughly, higher dim. TQFT is a higher functor from the higher category of higher-cobordisms to that of higher-vector spaces.
- Lurie, Toen et al.: higher structures in algebraic geometry (around 00's) absorbs homotopy theory and category theory. It is very universal however also rather abstract.
- Baez et al., Poisson community, Stolz-Teichner program: higher structures in differential geometry. It involves more concrete models and more direct relation to math physics.

• Dorothea Schlözer female postdoc program, deadline April 15th

- Source: theorectical physics needs to go to higher dimensions (3+1 dimension). For example, very roughly, higher dim. TQFT is a higher functor from the higher category of higher-cobordisms to that of higher-vector spaces.
- Lurie, Toen et al.: higher structures in algebraic geometry (around 00's) absorbs homotopy theory and category theory. It is very universal however also rather abstract.
- Baez et al., Poisson community, Stolz-Teichner program: higher structures in differential geometry. It involves more concrete models and more direct relation to math physics.
- \star Higher Lie groupoids $\sim\!\!\sim\!\!\!\sim$ charts for higher differentiable stacks

G

・ 戸 ト ・ ヨ ト ・ ヨ ト

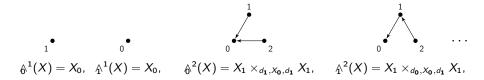
Dorothea Schlözer female postdoc program, deadline April 15th

- Source: theorectical physics needs to go to higher dimensions (3+1 dimension). For example, very roughly, higher dim. TQFT is a higher functor from the higher category of higher-cobordisms to that of higher-vector spaces.
- Lurie, Toen et al.: higher structures in algebraic geometry (around 00's) absorbs homotopy theory and category theory. It is very universal however also rather abstract.
- Baez et al., Poisson community, Stolz-Teichner program: higher structures in differential geometry. It involves more concrete models and more direct relation to math physics.
- \star Higher Lie groupoids $\sim\!\!\sim\!\!\!\sim$ charts for higher differentiable stacks
- ★ {Higher Lie groupoids}=iCFO ~~~> Nice Higher Category

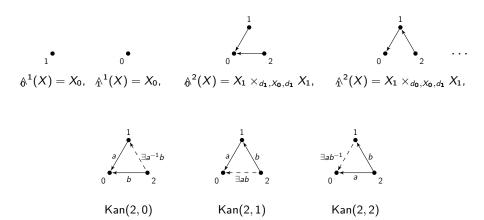
G

Dorothea Schlözer female postdoc program, deadline April 15th

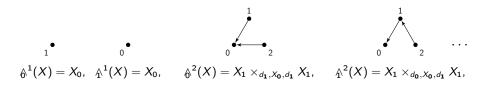
- Source: theorectical physics needs to go to higher dimensions (3+1 dimension). For example, very roughly, higher dim. TQFT is a higher functor from the higher category of higher-cobordisms to that of higher-vector spaces.
- Lurie, Toen et al.: higher structures in algebraic geometry (around 00's) absorbs homotopy theory and category theory. It is very universal however also rather abstract.
- Baez et al., Poisson community, Stolz-Teichner program: higher structures in differential geometry. It involves more concrete models and more direct relation to math physics.
- \star Higher Lie groupoids $\sim\!\!\sim\!\!\!\sim$ charts for higher differentiable stacks
- * {Higher Lie groupoids}=iCFO \longrightarrow Nice Higher Category
- \star Higher Lie groupoids \bigoplus shifted symplectic structure

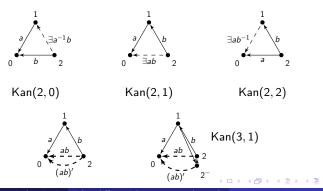


3/14



3/14





3/14

incomplete Category of fibrant objects (i.C.F.O.)

Let C be a category with finite products and terminal object $* \in C$ equipped with two distinguished classes of morphisms called **weak** equivalences and fibrations. A morphism which is both a weak equivalence and a fibration is called an **acyclic fibration**. We say C is an **category of fibrant objects (CFO)** iff:

- **(**) Every isomorphism in C is an acyclic fibration.
- 2 The class of weak equivalences satisfy "2 out of 3".
- Solution of two fibrations is a fibration.
- If the pullback along a fibration exists, then it is a fibration.
- The pullback along an acyclic fibration exists, and is an acyclic fibration.
- If or any object X ∈ C there exists a (not necessarily functorial) path object.
- **⊘** All objects of C are **fibrant**. That is, for any $X \in C$ the unique map $X \rightarrow *$ is a fibration.

incomplete Category of fibrant objects (i.C.F.O.)

Let C be a category with finite products and terminal object $* \in C$ equipped with two distinguished classes of morphisms called weak equivalences and fibrations. A morphism which is both a weak equivalence and a fibration is called an **acyclic fibration**. We say C is an incomplete category of fibrant objects (iCFO) iff:

- Every isomorphism in C is an acyclic fibration.
- The class of weak equivalences satisfy "2 out of 3".
- The composition of two fibrations is a fibration.
- If the pullback along a fibration exists, then it is a fibration. That is, if $Y \xrightarrow{g} Z \xleftarrow{f} X$ is a diagram in C with f a fibration, and if $X \times_Z Y$ exists, then the induced projection $X \times_{Z} Y \to Y$ is a fibration.
- The pullback along an acyclic fibration exists, and is an acyclic fibration. That is, if $Y \xrightarrow{g} Z \xleftarrow{f} X$ is a diagram in \mathcal{C} with f an acyclic fibration, then the pullback $X \times_{Z} Y$ exists, and the induced projection $X \times_{Z} Y \to Y$ is an acyclic fibration.
- **o** For any object $X \in C$ there exists a (not necessarily functorial) path 4/14

Lemma (Brown's factorization Lemma for iCFO, Rogers-Zhu'20)

If C is an iCFO and $f : X \to Y$ is a morphism in C, then f can be factored as $f = p \circ i$, where p is a fibration, and i is a weak equivalence which is a section (right inverse) of an acyclic fibration.

Lemma (Brown's factorization Lemma for iCFO, Rogers-Zhu'20)

If C is an iCFO and $f : X \to Y$ is a morphism in C, then f can be factored as $f = p \circ i$, where p is a fibration, and i is a weak equivalence which is a section (right inverse) of an acyclic fibration.

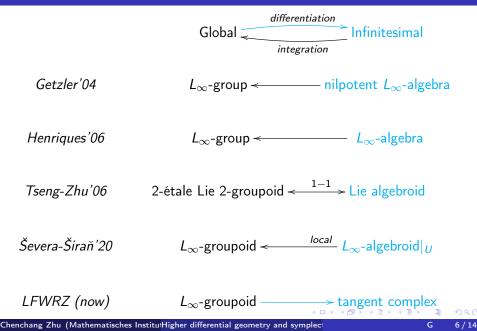
Theorem (Rogers-Zhu'20)

The simplicial localization L_WC (or underlying ∞ -category) of an iCFO C has a nice description in terms of the nerves of categories of spans. That is, for all objects $X, Y \in C$,

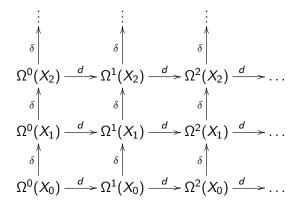
$$\operatorname{Hom}_{L_{W}\mathcal{C}}(X,Y) \leftarrow N\operatorname{Span}_{w.e.}(X,Y) \leftarrow N\operatorname{Span}_{acyc.}(X,Y)$$

are weak equivalence of simplicial sets.

Integration v.s. Differentiation

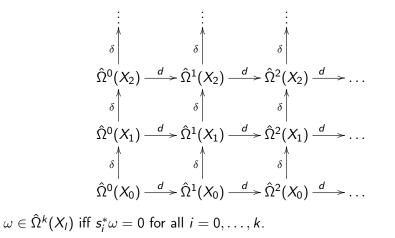


Differential Forms on X_{\bullet}



7/14

Normalised Differential Forms on X_{\bullet}



7 / 14

For
$$x \in X_0$$
, $v \in \mathcal{T}_l(X_{\bullet})_x$, $w \in \mathcal{T}_{m-l}(X_{\bullet})_x$,
$$\lambda_x^{\omega \bullet}(v, w) := \sum_{\sigma \in \mathsf{Sf}_{k,m-k}} (-1)^{\sigma} \omega_m(\mathcal{T}(s_{\sigma(m-1)} \dots s_{\sigma(k)})v, \mathcal{T}(s_{\sigma(k-1)} \dots s_{\sigma(0)})w)$$

where $\text{Sf}_{k,m-k}$ is the set of (k, m-k)-shuffles, and $(-1)^{\sigma}$ is the permutation sign of σ .

For
$$x \in X_0$$
, $v \in \mathcal{T}_l(X_{\bullet})_x$, $w \in \mathcal{T}_{m-l}(X_{\bullet})_x$,
 $\lambda_x^{\omega \bullet}(v, w) := \sum_{\sigma \in \mathrm{Sf}_{k,m-k}} (-1)^{\sigma} \omega_m(\mathcal{T}(s_{\sigma(m-1)} \dots s_{\sigma(k)})v, \mathcal{T}(s_{\sigma(k-1)} \dots s_{\sigma(0)})w)$

where $Sf_{k,m-k}$ is the set of (k, m-k)-shuffles, and $(-1)^{\sigma}$ is the permutation sign of σ .

• λ^{ω} • is graded anti-symmetric;

For
$$x \in X_0$$
, $v \in \mathcal{T}_l(X_{ullet})_x$, $w \in \mathcal{T}_{m-l}(X_{ullet})_x$,

$$\lambda_x^{\omega \bullet}(v,w) := \sum_{\sigma \in \mathsf{Sf}_{k,m-k}} (-1)^{\sigma} \omega_m(T(s_{\sigma(m-1)} \dots s_{\sigma(k)})v, T(s_{\sigma(k-1)} \dots s_{\sigma(0)})w)$$

where $\text{Sf}_{k,m-k}$ is the set of (k, m-k)-shuffles, and $(-1)^{\sigma}$ is the permutation sign of σ .

- λ^{ω} is graded anti-symmetric;
- $\lambda^{\omega_{\bullet}}$ is infinitesimally multiplicative, that is,

$$\lambda^{\alpha_{\bullet}}(\partial u, w) + (-1)^{k+1} \lambda^{\alpha_{\bullet}}(u, \partial w) = 0.$$

I.M. forms and shifted symplectic forms

For
$$x \in X_0$$
, $v \in \mathcal{T}_l(X_{\bullet})_x$, $w \in \mathcal{T}_{m-l}(X_{\bullet})_x$,
$$\lambda_x^{\omega \bullet}(v, w) := \sum_{\sigma \in \mathsf{Sf}_{k,m-k}} (-1)^{\sigma} \omega_m(\mathcal{T}(s_{\sigma(m-1)} \dots s_{\sigma(k)})v, \mathcal{T}(s_{\sigma(k-1)} \dots s_{\sigma(0)})w)$$

where $\text{Sf}_{k,m-k}$ is the set of (k, m-k)-shuffles, and $(-1)^{\sigma}$ is the permutation sign of σ .

- λ^{ω} is graded anti-symmetric;
- λ^{ω} is infinitesimally multiplicative, that is,

$$\lambda^{\alpha_{\bullet}}(\partial u, w) + (-1)^{k+1} \lambda^{\alpha_{\bullet}}(u, \partial w) = 0.$$

Definition

A m-shifted symplectic form on a Lie n-groupoid is a non-degenerate, closed m-shifted 2-form.

Chenchang Zhu (Mathematisches InstitutHigher differential geometry and symplect

8/14

m n	0	1	2
0	Symp. Mfd.		
1	Symp. Stack	integrable Dirac Mfd.	BG
2		non-int Dirac Mfd.	Courant algebroid

(4日) ト 4 回 ト 4

э.

m n	0	1	2
0	Symp. Mfd.		
1	Symp. Stack	Quasi Symp. Gpd.	BG
2		Quasi Symp. stacky Gpd.	Courant algebroid

-∢∰ ► ∢ ≣ ►

-∢∃>

Definition (Cueca-Zhu'23)

Morita Equivalence of Lie *n*-groupoids X_{\bullet} and Y_{\bullet} is given by

$$X_{\bullet} \xleftarrow{f_{\bullet}} Z_{\bullet} \xrightarrow{g_{\bullet}} Y_{\bullet}$$

where f_{\bullet} and g_{\bullet} are acyclic fibrations (also called hypercovers defined in iCFO).

Definition (Cueca-Zhu'23)

Symplectic Morita Equivalence of *m*-shifted symplectic Lie *n*-groupoids $(X_{\bullet}, \alpha_{\bullet})$ and $(Y_{\bullet}, \beta_{\bullet})$ is given by

$$(X_{\bullet}, \alpha_{\bullet}) \xleftarrow{f_{\bullet}} (Z_{\bullet}, \phi_{\bullet}) \xrightarrow{g_{\bullet}} (Y_{\bullet}, \beta_{\bullet})$$

where f_{\bullet} and g_{\bullet} are acyclic fibrations (also called hypercovers defined in iCFO). Moreover, ϕ_{\bullet} is a m-1-shifted form and $f_{\bullet}^*\alpha_{\bullet} - g_{\bullet}^*\beta_{\bullet} = D\phi_{\bullet}$.

Definition (Cueca-Zhu'23)

Symplectic Morita Equivalence of *m*-shifted symplectic Lie *n*-groupoids $(X_{\bullet}, \alpha_{\bullet})$ and $(Y_{\bullet}, \beta_{\bullet})$ is given by

$$(X_{\bullet}, \alpha_{\bullet}) \xleftarrow{f_{\bullet}} (Z_{\bullet}, \phi_{\bullet}) \xrightarrow{g_{\bullet}} (Y_{\bullet}, \beta_{\bullet})$$

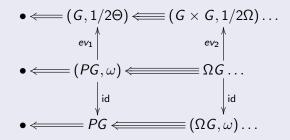
where f_{\bullet} and g_{\bullet} are acyclic fibrations (also called hypercovers defined in iCFO). Moreover, ϕ_{\bullet} is a m-1-shifted form and $f_{\bullet}^*\alpha_{\bullet} - g_{\bullet}^*\beta_{\bullet} = D\phi_{\bullet}$.

Theorem (Cueca-Zhu'23)

When m = n = 1, this symplectic Morita Equivalence coincides with the one defined in Xu'04 via Hamiltonian bimodules.

Theorem (Cueca-Zhu'23)

The 2-shifted sympolectic stack BG has the following symplectic Morita Equivalent models



where $\Theta \in \Omega^3(G)$ is the Cartan 3-form, $\Omega \in \Omega^2(G \times G)$ is the Brylinski-Weinstein 2-form, and ω is the Segal's 2-form.

Definition (Zhu'09)

A simplicial morphism $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ is a acyclic fibration or hypercover if the maps

 $((d_0,\cdots,d_i),f_i):X_i\to\partial_i(X_{\bullet})\times_{\partial_i(Y_{\bullet})}Y_i=\mathsf{Hom}(\partial\Delta[i]\to\Delta[i],X_{\bullet}\to Y_{\bullet})$

are surjective submersions for $0 \le i < n$ and an isomorphism for i = n.

Definition (Zhu'09)

A simplicial morphism $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ is a acyclic fibration or hypercover if the maps

$$((d_0,\cdots,d_i),f_i):X_i\to\partial_i(X_{\bullet})\times_{\partial_i(Y_{\bullet})}Y_i=\mathsf{Hom}(\partial\Delta[i]\to\Delta[i],X_{\bullet}\to Y_{\bullet})$$

are surjective submersions for $0 \le i < n$ and an isomorphism for i = n.

Definition (Behrend-Getzler'18, Rogers-Zhu'20)

A simplicial morphism $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ is a weak equivalence if

 $r_i: \mathsf{Hom}(\Delta[i] \to \Delta[i+1], X_{\bullet} \to Y_{\bullet}) \to \mathsf{Hom}(\partial \Delta[i] \to \Lambda[i+1, i+1], X_{\bullet} \to Y_{\bullet})$

is a surjective submersion for i < n and isomorphism for $i \ge n$.

Integration:

- L_{∞} -algebras by Henriques'08,
- nilpotent L_{∞} -algebras by Getzler'09,
- L_{∞} -algebroids (local result) by Ševera-Širaň'20

Differentiation:

- A formalization of the notion Lie differentiation in higher geometry has been given by Lurie (deformation context), worked out in diff. Geom. setting by Joost Nuiten, but the result is abstract.
- Ševera sketches an explicit differentiation functor with an idea inspired by Konsevich 2006. But the result is only a presheaf.
- Differentiation to tangent complex [Fernandes-Li-Ryvkin-Wessel-Zhu].