

• definition & morphisms,

- definition & morphisms,
- construction of $\nu_{\mathcal{W}}(M, N)$ & $\delta_{\mathcal{W}}(M, N)$

- definition & morphisms,
- construction of $\nu_{\mathcal{W}}(M, N)$ & $\delta_{\mathcal{W}}(M, N)$
- weighted submanifolds & weighted submersions,

- definition & morphisms,
- construction of $\nu_{\mathcal{W}}(M, N)$ & $\delta_{\mathcal{W}}(M, N)$
- weighted submanifolds & weighted submersions,
- 2 multiplicative weightings for Lie groupoids

- definition & morphisms,
- construction of $\nu_{\mathcal{W}}(M, N)$ & $\delta_{\mathcal{W}}(M, N)$
- weighted submanifolds & weighted submersions,
- 2 multiplicative weightings for Lie groupoids
- 3 infinitesimally multiplicative weightings for Lie algebroids

- definition & morphisms,
- construction of $\nu_{\mathcal{W}}(M, N)$ & $\delta_{\mathcal{W}}(M, N)$
- weighted submanifolds & weighted submersions,
- 2 multiplicative weightings for Lie groupoids
- 3 infinitesimally multiplicative weightings for Lie algebroids
- ④ differentiation of multiplicative weightings

Definition (Loizides-Meinrenken, 2020) Fix weights $0 \le w_1 \le \cdots \le w_n \le r \in \mathbb{Z}$.

Definition (Loizides-Meinrenken, 2020) Fix weights $0 \le w_1 \le \cdots \le w_n \le r \in \mathbb{Z}$. A filtration

$$C^{\infty}(M) = C^{\infty}(M)_{(0)} \supseteq C^{\infty}(M)_{(1)} \supseteq C^{\infty}(M)_{(2)} \supseteq \cdots \qquad (1)$$

is a weighting of M if locally one has coordinates x_a so that

$$f \in C^{\infty}(M)_{(i)} \iff f(x) = \sum_{|\alpha| \ge i} x^{\alpha} f_{\alpha}(x),$$

where $|\alpha| = \sum_{i=1}^{n} \alpha_i w_i$.

Definition (Loizides-Meinrenken, 2020) Fix weights $0 \le w_1 \le \cdots \le w_n \le r \in \mathbb{Z}$. A filtration

$$C^{\infty}(M) = C^{\infty}(M)_{(0)} \supseteq C^{\infty}(M)_{(1)} \supseteq C^{\infty}(M)_{(2)} \supseteq \cdots$$
(1)

is a weighting of M if locally one has coordinates x_a so that

$$f \in C^{\infty}(M)_{(i)} \iff f(x) = \sum_{|\alpha| \ge i} x^{\alpha} f_{\alpha}(x),$$

where $|\alpha| = \sum_{i=1}^{n} \alpha_i w_i$. A map $f : M \to M'$ is a *weighted morphism* if $f^* C^{\infty}(M')_{(i)} \subseteq C^{\infty}(M)_{(i)} \quad \forall i.$

Definition (Loizides-Meinrenken, 2020) Fix weights $0 \le w_1 \le \cdots \le w_n \le r \in \mathbb{Z}$. A filtration

$$C^{\infty}(M) = C^{\infty}(M)_{(0)} \supseteq C^{\infty}(M)_{(1)} \supseteq C^{\infty}(M)_{(2)} \supseteq \cdots$$
(1)

is a weighting of M if locally one has coordinates x_a so that

$$f \in C^{\infty}(M)_{(i)} \iff f(x) = \sum_{|\alpha| \ge i} x^{\alpha} f_{\alpha}(x),$$

where $|\alpha| = \sum_{i=1}^{n} \alpha_i w_i$. A map $f : M \to M'$ is a *weighted morphism* if $f^* C^{\infty}(M')_{(i)} \subseteq C^{\infty}(M)_{(i)} \quad \forall i.$

Remark: $C^{\infty}(M)_{(1)} = \mathcal{I}_N$ for a closed submanifold $N \subseteq M$. (M, N) is a *weighted manifold pair*.

Example

The trivial weighting of M along N is given by

$$C^{\infty}(M) \supseteq \mathcal{I}_N \supseteq \mathcal{I}_N^2 \supseteq \cdots$$

Example

The trivial weighting of M along N is given by

$$C^{\infty}(M) \supseteq \mathcal{I}_N \supseteq \mathcal{I}_N^2 \supseteq \cdots$$

Example

$$(M, N) = (\mathbb{R}^2, \{0\}), wt(x) = 1, wt(y) = 3$$
:

Example

The trivial weighting of M along N is given by

$$C^{\infty}(M) \supseteq \mathcal{I}_N \supseteq \mathcal{I}_N^2 \supseteq \cdots$$

Example

$$(M, N) = (\mathbb{R}^2, \{0\}), \operatorname{wt}(x) = 1, \operatorname{wt}(y) = 3:$$

 $\mathcal{C}^{\infty}(\mathbb{R}^3) \supseteq \langle x, y \rangle \supseteq \langle x^2, y \rangle \supseteq \langle x^3, y \rangle \supseteq \langle x^4, xy, y^2 \rangle \supseteq \cdots$

An order r weighting of M along N determines a:

An order r weighting of M along N determines a:

filtration of vector fields:

$$\mathfrak{X}(M) = \mathfrak{X}(M)_{(-r)} \supseteq \mathfrak{X}(M)_{(-r+1)} \supseteq \cdots$$

An order r weighting of M along N determines a:

filtration of vector fields:

$$\mathfrak{X}(M) = \mathfrak{X}(M)_{(-r)} \supseteq \mathfrak{X}(M)_{(-r+1)} \supseteq \cdots$$

② filtration of k-forms:

$$\Omega^k(M) = \Omega^k(M)_{(0)} \supseteq \Omega^k(M)_{(1)} \supseteq$$

Weighted Normal Bundle

For a weighted pair (M, N), let

$$\operatorname{gr}(C^{\infty}(M)) = \bigoplus_{i \geq 0} C^{\infty}(M)_{(i)}/C^{\infty}(M)_{(i+1)}$$

Weighted Normal Bundle

For a weighted pair (M, N), let

$$\operatorname{gr}(C^{\infty}(M)) = \bigoplus_{i \geq 0} C^{\infty}(M)_{(i)}/C^{\infty}(M)_{(i+1)}.$$

Theorem (Loizides-Meinrenken, 2020, c.f. Haj-Higson, 2018) *The weighted normal bundle*

 $\nu_{\mathcal{W}}(M,N) := \operatorname{Hom}_{alg}(\operatorname{gr}(C^{\infty}(M)), \mathbb{R})$

is a graded bundle over N of dimension $\dim(M)$ s.t.

$$\operatorname{gr}(C^{\infty}(M)) \subseteq C^{\infty}(\nu_{\mathcal{W}}(M,N)).$$

This construction is functorial for weighted morphisms.

Daniel Hudson	(Toronto)
---------------	-----------

Weighted Deformation Space

For a weighted pair (M, N) let

$$\operatorname{Rees}(C^{\infty}(M)) = \left\{ \sum_{i \in \mathbb{Z}} f_i z^{-i} : f_i \in C^{\infty}(M)_{(i)} \right\} \subseteq C^{\infty}(M)[z, z^{-1}].$$

Weighted Deformation Space

For a weighted pair (M, N) let

$$\operatorname{Rees}(C^{\infty}(M)) = \left\{ \sum_{i \in \mathbb{Z}} f_i z^{-i} : f_i \in C^{\infty}(M)_{(i)} \right\} \subseteq C^{\infty}(M)[z, z^{-1}].$$

Theorem (Loizides-Meinrenken, 2020, c.f. Haj-Higson, 2018) *The weighted deformation space*

 $\delta_{\mathcal{W}}(M, N) := \operatorname{Hom}_{alg}(\operatorname{Rees}(C^{\infty}(M)), \mathbb{R})$

has C^{∞} structure of dimension dim(M) + 1 s.t

 $\operatorname{Rees}(C^{\infty}(M)) \subseteq C^{\infty}(\delta_{\mathcal{W}}(M, N)).$

This construction is functorial for weighted morphisms.

Daniel Hudson (Toronto)

There is a surjective submersion $\pi : \delta_{\mathcal{W}}(M, N) \to \mathbb{R}$ giving the decomposition

$$\delta_{\mathcal{W}}(M,N) = \nu_{\mathcal{W}}(M,N) \bigsqcup M \times \mathbb{R}^{\times}.$$

There is a surjective submersion $\pi : \delta_{\mathcal{W}}(M, N) \to \mathbb{R}$ giving the decomposition

$$\delta_{\mathcal{W}}(M,N) = \nu_{\mathcal{W}}(M,N) \bigsqcup M \times \mathbb{R}^{\times}.$$

Example

(1) $\delta(M \times M, \Delta_M) = TM \sqcup (M \times M \times \mathbb{R}^{\times})$, Connes' tangent groupoid.

Question

Suppose that $G \rightrightarrows M$ is weighted along H. What are the correct conditions on the weighting so that $\nu_{\mathcal{W}}(G, H)$ and $\delta_{\mathcal{W}}(G, H)$ are Lie groupoids?

Suppose that $G \rightrightarrows M$ is weighted along $H \rightrightarrows N$. (G, H) is *multiplicatively weighted* if

- ① $M \subseteq G$ is a weighted submanifold,
- ② $s, t: G \rightarrow M$ are weighted submersions,
- 3 mult : $G^{(2)} \rightarrow G$ is a weighted morphism,
- ④ inv : $G \rightarrow G$ is a weighted morphism.

A submanifold R of a weighted pair (M, N) is called a *weighted* submanifold if there exists a weighted atlas of submanifold charts.

A submanifold R of a weighted pair (M, N) is called a *weighted* submanifold if there exists a weighted atlas of submanifold charts.

R inherits a weighting along $R \cap N$ via the filtration

$$C^{\infty}(R)_{(i)} := C^{\infty}(M)_{(i)}/(\mathcal{I}_R \cap C^{\infty}(M)_{(i)})$$

s.t. $R \hookrightarrow M$ is weighted.

Examples

 M is trivially weighted along N, then R ⊆ (M, N) is a weighted submanifold iff R intersects N cleanly.

Examples

- *M* is trivially weighted along *N*, then $R \subseteq (M, N)$ is a weighted submanifold iff *R* intersects *N* cleanly.
- ℝ², wt(x) = 1 and wt(y) = 3. The curve y = x² is not a weighted
 submanifold of (ℝ², {0}).

Weighted Morphisms

Definitions

A weighted morphism $f : (M, N) \rightarrow (M', N')$ is a *weighted submersion* if the induced map

$$\delta_{\mathcal{W}}(f): \delta_{\mathcal{W}}(M, N) \to \delta_{\mathcal{W}}(M', N')$$

is a submersion.

Weighted Morphisms

Definitions

A weighted morphism $f : (M, N) \rightarrow (M', N')$ is a *weighted submersion* if the induced map

$$\delta_{\mathcal{W}}(f): \delta_{\mathcal{W}}(M, N) \to \delta_{\mathcal{W}}(M', N')$$

is a submersion.

Proposition

If $f: (M, N) \to (M', N')$ is a weighted submersion and R' is a weighted submanifold of (M', N'), then $f^{-1}(R')$ is a weighted submanifold of (M, N).

Suppose that $G \rightrightarrows M$ is weighted along H. (G, H) is *multiplicatively weighted* if

- 1) $M \subseteq G$ is a weighted submanifold,
- ② $s, t: G \rightarrow M$ are weighted submersions,
- 3 mult : $G^{(2)} \rightarrow G$ is a weighted morphism,
- ④ inv : $G \rightarrow G$ is a weighted morphism.

Theorem

If $G \rightrightarrows M$ is multiplicatively weighted along $H \rightrightarrows N$, then

 $u_{\mathcal{W}}(G, H) \rightrightarrows
u_{\mathcal{W}}(M, N) \text{ and } \delta_{\mathcal{W}}(G, H) \rightrightarrows \delta_{\mathcal{W}}(M, N)$

are Lie groupoids.

Examples

• The trivial weighting of G along H is multiplicative iff H is a Lie subgroupoid.

Examples

- The trivial weighting of G along H is multiplicative iff H is a Lie subgroupoid.
- Connes' tangent groupoid:

 $\delta_{\mathcal{W}}(\operatorname{Pair}(M), \Delta_M) = \mathbb{T}M.$

- The trivial weighting of G along H is multiplicative iff H is a Lie subgroupoid.
- Connes' tangent groupoid:

$$\delta_{\mathcal{W}}(\operatorname{Pair}(M), \Delta_M) = \mathbb{T}M.$$

• Osculating tangent groupoid:

 $\delta_{\mathcal{W}}(\operatorname{Pair}(M), \Delta_M) = \mathbb{T}_H M.$

Question What is the infinitesimal analogue of multiplicative weightings?

Linear Weightings

Definition

Let V be a rank k vector bundle over the weighted manifold M, and fix weights $v_1, \ldots, v_k \in \mathbb{Z}$.

Definition

Let V be a rank k vector bundle over the weighted manifold M, and fix weights $v_1, \ldots, v_k \in \mathbb{Z}$. A *linear weighting* of V is a filtration

$$\cdots \supseteq \Gamma(V)_{(i)} \supseteq \Gamma(V)_{(i+1)} \supseteq \cdots$$

s.t. locally one has a frame σ_a s.t.

$$\sigma \in \Gamma(V)_{(i)} \iff \sigma = \sum_{a=1}^{k} f_a \sigma_a$$

with $f_a \in C^{\infty}(M)_{(i-v_a)}$.

Example If (M, N) is a weighted pair, then

Example

- If (M, N) is a weighted pair, then
 - 1) $\mathfrak{X}(M)_{(i)}$ is a linear weighting of TM,

Example

If (M, N) is a weighted pair, then

- 1) $\mathfrak{X}(M)_{(i)}$ is a linear weighting of TM,
- 2 $\Omega^1(M)_{(i)}$ is a linear weighting of T^*M

Example

If (M, N) is a weighted pair, then

- 1) $\mathfrak{X}(M)_{(i)}$ is a linear weighting of TM,
- (2) $\Omega^1(M)_{(i)}$ is a linear weighting of T^*M

Dual weighting & Weighted morphisms

If V is linearly weighted then V^* is linearly weighted with

$$\Gamma(V^*)_{(i)} = \{\tau \in \Gamma(V^*) : \forall j, \ \sigma \in \Gamma(V)_{(j)} \implies \langle \tau, \sigma \rangle \in C^\infty(M)_{(i+j)} \}.$$

Example

If (M, N) is a weighted pair, then

- 1) $\mathfrak{X}(M)_{(i)}$ is a linear weighting of TM,
- 2 $\Omega^1(M)_{(i)}$ is a linear weighting of T^*M

Dual weighting & Weighted morphisms

If V is linearly weighted then V^* is linearly weighted with

$$\Gamma(V^*)_{(i)} = \{\tau \in \Gamma(V^*) : \forall j, \ \sigma \in \Gamma(V)_{(j)} \implies \langle \tau, \sigma \rangle \in C^\infty(M)_{(i+j)} \}.$$

A \mathcal{VB} -morphism $\varphi: V \to W$ is *weighted* if the base map $\varphi|_M: M \to M'$ is weighted and

$$\varphi^*: \Gamma(W^*)_{(i)} \to \Gamma(V^*)_{(i)}.$$

For V linearly weighted let

$$\operatorname{gr}(\Gamma(V)) = \bigoplus_{i \in \mathbb{Z}} \Gamma(V)_{(i)} / \Gamma(V)_{(i+1)}.$$

For V linearly weighted let

$$\operatorname{gr}(\Gamma(V)) = \bigoplus_{i \in \mathbb{Z}} \Gamma(V)_{(i)} / \Gamma(V)_{(i+1)}.$$

Theorem

The space

$$\nu_{\mathcal{W}}(V) := \{(\varphi, \psi) : \varphi \in \nu_{\mathcal{W}}(M, N), \psi \in \operatorname{Hom}_{\varphi}(\operatorname{gr}(\Gamma(V^*)), \mathbb{R})\}$$

is a smooth vector bundle over $\nu_{\mathcal{W}}(M, N) = \operatorname{Hom}_{alg}(\operatorname{gr}(C^{\infty}(M)), \mathbb{R})$. This construction is functorial for weighted \mathcal{VB} -morphisms

For V linearly weighted let

$$\operatorname{Rees}(\Gamma(V)) = \left\{ \sum_{i \in \mathbb{Z}} \sigma_i z^{-i} : \sigma_i \in \Gamma(V)_{(i)} \right\}.$$

For V linearly weighted let

$$\operatorname{Rees}(\Gamma(V)) = \left\{ \sum_{i \in \mathbb{Z}} \sigma_i z^{-i} : \sigma_i \in \Gamma(V)_{(i)} \right\}.$$

Theorem

The weighted deformation bundle

$$\delta_{\mathcal{W}}(V) := \{(\varphi, \psi) : \varphi \in \nu_{\mathcal{W}}(M, N), \psi \in \operatorname{Hom}_{\varphi}(\operatorname{Rees}(\Gamma(V^*)), \mathbb{R})\}$$

is a smooth vector bundle over $\delta_{\mathcal{W}}(M, N)$. This construction is functorial for weighted \mathcal{VB} -morphisms

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

$$\begin{array}{ccc} \bullet & [\Gamma(A)_{(i)}, \Gamma(A)_{(j)}] \subseteq \Gamma(A))_{(i+j)}, \\ \bullet & a : \Gamma(A)_{(i)} \to \mathfrak{X}(M)_{(i)}, \end{array}$$

② d : $\Gamma(\wedge^{\bullet}A^*) \rightarrow \Gamma(\wedge^{\bullet+1}A^*)$ is filtration preserving,

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

- ② d : $\Gamma(\wedge^{\bullet}A^*) \rightarrow \Gamma(\wedge^{\bullet+1}A^*)$ is filtration preserving,
- 3 the Poisson bivector on A^* has filtration degree zero.

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

- ② d : $\Gamma(\wedge^{\bullet}A^*) \rightarrow \Gamma(\wedge^{\bullet+1}A^*)$ is filtration preserving,
- 3 the Poisson bivector on A^* has filtration degree zero.

We say A is *infinitesimally multiplicatively weighted* in this case.

Definition/Theorem

Suppose $A \Rightarrow M$ is a linearly weighted Lie algebroid. TFAE:

② d : $\Gamma(\wedge^{\bullet}A^*) \rightarrow \Gamma(\wedge^{\bullet+1}A^*)$ is filtration preserving,

3) the Poisson bivector on A^* has filtration degree zero.

We say A is *infinitesimally multiplicatively weighted* in this case. A *weighted* \mathcal{LA} -morphism is weighted \mathcal{VB} -morphism $\varphi : A \to B$ s.t.

$$\varphi^*: \Gamma(\wedge^{\bullet} B^*) \to \Gamma(\wedge^{\bullet} A^*)$$

is a chain map.

Theorem

If $A \Rightarrow M$ is infinitesimally multiplicatively weighted then

$$u_{\mathcal{W}}(A) \Rightarrow \nu_{\mathcal{W}}(M, N) \text{ and } \delta_{\mathcal{W}}(A) \Rightarrow \delta_{\mathcal{W}}(M, N)$$

are Lie algebroids. This construction is functorial for weighted \mathcal{LA} -morphisms.

Theorem

If $G \rightrightarrows M$ is multiplicatively weighted then $\text{Lie}(G) \Rightarrow M$ obtains a canonical infinitesimally multiplicative weighting. One has that

 $\operatorname{Lie}(\nu_{\mathcal{W}}(G,H)) = \nu_{\mathcal{W}}(\operatorname{Lie}(G))$ and $\operatorname{Lie}(\delta_{\mathcal{W}}(G,H)) = \delta_{\mathcal{W}}(\operatorname{Lie}(G))$

Thanks for your attention!