Integrable systems and S^{1}-actions: constructions and bifurcations

Joseph Palmer
University of Illinois at Urbana-Champaign

joint with Y. Le Floch and S. Hohloch

Gone Fishing 2023
March 17, 2023

Symplectic manifolds and integrable systems

- Let (M, ω) be a symplectic manifold and $f: M \rightarrow \mathbb{R}$.
- Denote by \mathcal{X}_{f} the Hamiltonian vector field of f, which satisfies

$$
\omega\left(\mathcal{X}_{f}, \cdot\right)+\mathrm{d} f=0
$$

Symplectic manifolds and integrable systems

- Let (M, ω) be a symplectic manifold and $f: M \rightarrow \mathbb{R}$.
- Denote by \mathcal{X}_{f} the Hamiltonian vector field of f, which satisfies

$$
\omega\left(\mathcal{X}_{f}, \cdot\right)+\mathrm{d} f=0
$$

Definition

An integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;

Symplectic manifolds and integrable systems

- Let (M, ω) be a symplectic manifold and $f: M \rightarrow \mathbb{R}$.
- Denote by \mathcal{X}_{f} the Hamiltonian vector field of f, which satisfies

$$
\omega\left(\mathcal{X}_{f}, \cdot\right)+\mathrm{d} f=0
$$

Definition

An integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;

- singular points are those for which linear independence fails.

Symplectic manifolds and integrable systems

- Let (M, ω) be a symplectic manifold and $f: M \rightarrow \mathbb{R}$.
- Denote by \mathcal{X}_{f} the Hamiltonian vector field of f, which satisfies

$$
\omega\left(\mathcal{X}_{f}, \cdot\right)+\mathrm{d} f=0
$$

Definition

An integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;

- singular points are those for which linear independence fails.
- Flows of $\mathcal{X}_{f_{1}}, \ldots \mathcal{X}_{f_{n}}$ induce (local) \mathbb{R}^{n}-action.

Toric integrable systems: definition

Definition

A toric integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
I $\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;

Toric integrable systems: definition

Definition

A toric integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;
3 the flows of $\mathcal{X}_{f_{1}}, \ldots, \mathcal{X}_{f_{n}}$ generate an effective T^{n}-action (in particular each flow is periodic);
$4 M$ is compact;

Toric integrable systems: definition

Definition

A toric integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;
3 the flows of $\mathcal{X}_{f_{1}}, \ldots, \mathcal{X}_{f_{n}}$ generate an effective T^{n}-action (in particular each flow is periodic);
$4 M$ is compact;

- i.e. a global Hamiltonian T^{n}-action.

Toric integrable systems: definition

Definition

A toric integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;
3 the flows of $\mathcal{X}_{f_{1}}, \ldots, \mathcal{X}_{f_{n}}$ generate an effective T^{n}-action (in particular each flow is periodic);
$4 M$ is compact;

- i.e. a global Hamiltonian T^{n}-action.
- $F: M \rightarrow \mathbb{R}^{n}$,

Toric integrable systems: definition

Definition

A toric integrable system is a triple $\left(M, \omega, F=\left(f_{1}, \ldots, f_{n}\right)\right)$ where (M, ω) is a $2 n$-dimensional symplectic manifold and
$1 \quad\left\{f_{i}, f_{j}\right\}=0$;
$2 \mathrm{~d} f_{1}, \ldots, \mathrm{~d} f_{n}$ are linearly independent almost everywhere;
3 the flows of $\mathcal{X}_{f_{1}}, \ldots, \mathcal{X}_{f_{n}}$ generate an effective T^{n}-action (in particular each flow is periodic);
$4 M$ is compact;

- i.e. a global Hamiltonian T^{n}-action.
- $F: M \rightarrow \mathbb{R}^{n}$, Atiyah, Guillemin-Sternberg (1982) showed that in this case $F(M)$ is the convex hull of the images of the fixed points.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^{n}$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M)=\Delta$.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^{n}$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M)=\Delta$.

- $\{$ toric systems $\} \stackrel{1-1}{\longleftrightarrow}\{$ Delzant polytopes $\}$.

Toric integrable systems: the classification

Theorem (Delzant, 1988)

Given any "Delzant polytope" $\Delta \subset \mathbb{R}^{n}$, there exists a unique (up to isomorphism) toric integrable system (M, ω, F) such that $F(M)=\Delta$.

- $\{$ toric systems $\} \stackrel{1-1}{\longleftrightarrow}$ \{Delzant polytopes $\}$.
- Given a polygon, the associated system can be constructed by performing symplectic reduction on \mathbb{C}^{d}.

Example

- $M=S^{2} \times S^{2}, \quad \omega=\omega_{1} \oplus 2 \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

- $M=S^{2} \times S^{2}, \quad \omega=\omega_{1} \oplus 2 \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$
- $F=(J, H)$

$$
\left\{\begin{array}{l}
J=z_{1}+2 z_{2} \\
H=z_{1}
\end{array}\right.
$$

Example

- $M=S^{2} \times S^{2}, \quad \omega=\omega_{1} \oplus 2 \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$
- $F=(J, H)$

$$
\left\{\begin{array}{l}
J=z_{1}+2 z_{2} \\
H=z_{1}
\end{array}\right.
$$

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple $(M, \omega, F=(J, H))$ where (M, ω) is a 4-dimensional symplectic manifold and
$1\{J, H\}=0$;
$2 \mathrm{~d} J$ and $\mathrm{d} H$ are linearly independent almost everywhere;

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple $(M, \omega, F=(J, H))$ where (M, ω) is a 4-dimensional symplectic manifold and
$1\{J, H\}=0$;
$2 \mathrm{~d} J$ and $\mathrm{d} H$ are linearly independent almost everywhere;
3 the flow of \mathcal{X}_{J} is periodic (i.e. generates an S^{1}-action);
$4 J$ is proper;
5 all singularities of (J, H) are non-degenerate with no hyperbolic blocks.

Semitoric integrable systems: definition

Definition (Vũ Ngọc, 2007)

A semitoric integrable system is a triple $(M, \omega, F=(J, H))$ where (M, ω) is a 4-dimensional symplectic manifold and
$1\{J, H\}=0$;
$2 \mathrm{~d} J$ and $\mathrm{d} H$ are linearly independent almost everywhere;
3 the flow of \mathcal{X}_{J} is periodic (i.e. generates an S^{1}-action);
$4 J$ is proper;
5 all singularities of (J, H) are non-degenerate with no hyperbolic blocks.

- (M, ω, J) is a Hamiltonian S^{1}-space (as studied by Karshon, 1999).

Semitoric integrable systems: fibers

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Semitoric integrable systems: fibers

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems:
regular elliptic-regular elliptic-elliptic focus-focus

Semitoric integrable systems: fibers

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems: regular elliptic-regular
elliptic-elliptic focus-focus

Semitoric integrable systems: fibers

Points in simple semitoric systems:

- regular points;
- rank one: elliptic-regular points;
- fixed points (rank zero): elliptic-elliptic points or focus-focus points.

Fibers in simple semitoric systems: regular elliptic-regular
elliptic-elliptic focus-focus

Semitoric integrable systems: classification

The five invariants:
(1) the number of focus-focus points invariant;
(2) the semitoric polygon invariant;
(3) the height invariant;
(4) the Taylor series invariant;
(5) the twisting index invariant;

Semitoric integrable systems: classification

The five invariants:
(1) the number of focus-focus points invariant;
(2) the semitoric polygon invariant;
(3) the height invariant;
(4) the Taylor series invariant;
(5) the twisting index invariant;

Theorem (Pelayo-Vũ Ngọc classification $(2009,2011)$)

1 Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);

2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.

Semitoric integrable systems: classification

The five invariants:
(1) the number of focus-focus points invariant;
(2) the semitoric polygon invariant;
(3) the height invariant;
(4) the Taylor series invariant;
(5) the twisting index invariant;

Theorem (Pelayo-Vũ Ngọc classification $(2009,2011)$)

1 Two simple semitoric systems are isomorphic if and only if they have the same invariants (1)-(5);

2 Given any admissible list of invariants (1)-(5) there exists a simple semitoric system with those as its invariants.

- $\{$ simple semitoric systems $\} \stackrel{1-1}{\longleftrightarrow}\{$ admissible invts $(1)-(5)\}$.

Semitoric integrable systems: non-simple classification

- In a non-simple semitoric system, several focus-focus points can lie on the same fiber.

Semitoric integrable systems: non-simple classification

- In a non-simple semitoric system, several focus-focus points can lie on the same fiber.

Theorem (Palmer-Pelayo-Tang (2019))

Semitoric systems, simple are not, are classified by the marked labeled semitoric polygon invariant.

Semitoric integrable systems: non-simple classification

- In a non-simple semitoric system, several focus-focus points can lie on the same fiber.

Theorem (Palmer-Pelayo-Tang (2019))

Semitoric systems, simple are not, are classified by the marked labeled semitoric polygon invariant.

- \{semitoric systems $\} \stackrel{1-1}{\longleftrightarrow}$ \{marked labeled semitoric polygons $\}$.

General goal

- Toric integrable systems can be constructed from the polytope by performing symplectic reductions on \mathbb{C}^{d} by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.

General goal

- Toric integrable systems can be constructed from the polytope by performing symplectic reductions on \mathbb{C}^{d} by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case!

General goal

- Toric integrable systems can be constructed from the polytope by performing symplectic reductions on \mathbb{C}^{d} by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples).

General goal

- Toric integrable systems can be constructed from the polytope by performing symplectic reductions on \mathbb{C}^{d} by a torus action.
- Semitoric integrable systems can be constructed from invariants by gluing of semi-local normal forms.
- Much harder to write down examples in semitoric case! (in some sense unavoidable because semitoric systems are more complicated, but should still be able to find some examples).

Goal

Given specified semitoric polygon invariant try to find an explicit system with that invariant (forgetting about the other invariants).

Semitoric invariants: the polygon invariant

- $F: M \rightarrow \mathbb{R}^{2}$ produces a singular Lagrangian torus fibration

Semitoric invariants: the polygon invariant

- $F: M \rightarrow \mathbb{R}^{2}$ produces a singular Lagrangian torus fibration

Semitoric invariants: the polygon invariant

- $F: M \rightarrow \mathbb{R}^{2}$ produces a singular Lagrangian torus fibration.

Semitoric invariants: the polygon invariant

- $F: M \rightarrow \mathbb{R}^{2}$ produces a singular Lagrangian torus fibration.

- Torus fibration \rightarrow integral affine structure on $(F(M))_{\text {regular }}$.
- NOT equal to integral affine structure inherited from \mathbb{R}^{2}.

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

- Semitoric polygon invariant: Family of polygons.

Semitoric invariants: the polygon invariant

- The integral affine structure may be "straightened out" [Vũ Ngọc (2007), Symington (2002)]

- Semitoric polygon invariant: Family of polygons.
- Marked semitoric polygon: includes information of invariants 1,2 , and 3.

Semitoric invariants: the remaining invariants

- For each focus-focus point the neighborhood of the singular fiber is classified by the Taylor series invariant [Vũ Ngọc, 2003].

Semitoric invariants: the remaining invariants

- For each focus-focus point the neighborhood of the singular fiber is classified by the Taylor series invariant [Vũ Ngọc, 2003].

Semitoric invariants: the remaining invariants

- For each focus-focus point the neighborhood of the singular fiber is classified by the Taylor series invariant [Vũ Ngọc, 2003].

Semitoric invariants: the remaining invariants

- For each focus-focus point the neighborhood of the singular fiber is classified by the Taylor series invariant [Vũ Ngọc, 2003].

Semitoric invariants: the remaining invariants

- For each focus-focus point the neighborhood of the singular fiber is classified by the Taylor series invariant [Vũ Ngọc, 2003].

- There is an additional degree of freedom related to how this fiber sits with respect to the rest of the fibration, encoded in the twisting index invariant, an integer for each marked point in each choice of polygon.

Example: Coupled angular momenta

[Sadovskií and Zhilinskií, 1999]

- $M=S^{2} \times S^{2}, \quad \omega=R_{1} \omega_{1} \oplus R_{2} \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

Example: Coupled angular momenta

[Sadovskií and Zhilinskií, 1999]

- $M=S^{2} \times S^{2}, \quad \omega=R_{1} \omega_{1} \oplus R_{2} \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

$$
\left\{\begin{array}{l}
J=R_{1} z_{1}+R_{2} z_{2} \\
H_{t}=(1-t) z_{1}+t\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{array}\right.
$$

for $t \in[0,1]$ and $R_{1}<R_{2}$.

Example: Coupled angular momenta

[Sadovskií and Zĥilinskií, 1999]

- $M=S^{2} \times S^{2}, \quad \omega=R_{1} \omega_{1} \oplus R_{2} \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

$$
\left\{\begin{array}{l}
J=R_{1} z_{1}+R_{2} z_{2} \\
H_{t}=(1-t) z_{1}+t\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{array}\right.
$$

for $t \in[0,1]$ and $R_{1}<R_{2}$.

- Notice J and H_{0} generate S^{1}-actions

Example: Coupled angular momenta

[Sadovskií and Zĥilinskií, 1999]

- $M=S^{2} \times S^{2}, \quad \omega=R_{1} \omega_{1} \oplus R_{2} \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

$$
\left\{\begin{array}{l}
J=R_{1} z_{1}+R_{2} z_{2} \\
H_{t}=(1-t) z_{1}+t\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{array}\right.
$$

for $t \in[0,1]$ and $R_{1}<R_{2}$.

- Notice J and H_{0} generate S^{1}-actions
- Let $N S=(0,0,1,0,0,-1)$

Example: Coupled angular momenta

[Sadovskií and Zĥilinskií, 1999]

- $M=S^{2} \times S^{2}, \quad \omega=R_{1} \omega_{1} \oplus R_{2} \omega_{2}$
- coordinates $\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)$

$$
\left\{\begin{array}{l}
J=R_{1} z_{1}+R_{2} z_{2} \\
H_{t}=(1-t) z_{1}+t\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)
\end{array}\right.
$$

for $t \in[0,1]$ and $R_{1}<R_{2}$.

- Notice J and H_{0} generate S^{1}-actions
- Let $N S=(0,0,1,0,0,-1)$

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))
Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))
Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

2 if $t=t^{-}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))
Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

2 if $t=t^{-}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;
3 if $t^{-}<t<t^{+}$then $\left(J, H_{t}\right)$ is a semitoric with exactly one focus-focus point (at NS);

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))
Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

2 if $t=t^{-}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;
3 if $t^{-}<t<t^{+}$then $\left(J, H_{t}\right)$ is a semitoric with exactly one focus-focus point (at NS);
4 if $t=t^{+}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))
Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

2 if $t=t^{-}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;
3 if $t^{-}<t<t^{+}$then $\left(J, H_{t}\right)$ is a semitoric with exactly one focus-focus point (at NS);
4 if $t=t^{+}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;
5 if $t>t^{+}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points.

Example: Coupled angular momenta

Theorem (Sadovskií-Zhilinskií (1999) and Le Floch-Pelayo (2018))

Let $t \in[0,1]$. There exists $t^{-}, t^{+} \in(0,1)$ such that $t^{-}<t^{+}$and
1 if $t<t^{-}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points;

2 if $t=t^{-}$then $\left(J, H_{t}\right)$ has a degenerate singular point at $N S$;
3 if $t^{-}<t<t^{+}$then $\left(J, H_{t}\right)$ is a semitoric with exactly one focus-focus point (at NS);

4 if $t=t^{+}$then $\left(J, H_{t}\right)$ has a degenerate singular point at NS;
5 if $t>t^{+}$then $\left(J, H_{t}\right)$ is semitoric with zero focus-focus points.

- In particular, $\left(J, H_{1 / 2}\right)$ is semitoric.

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points
(figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points
(figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with one focus-focus point (figure made in Mathematica)

Coupled angular momenta: moment map image

Semitoric with zero focus-focus points
(figure made in Mathematica)

Coupled angular momenta: semitoric polygon

The image of the momentum map for $\left(J, H_{t}\right)$:

Coupled angular momenta: semitoric polygon

The image of the momentum map for $\left(J, H_{t}\right)$:

The semitoric polygons for $\left(J, H_{1 / 2}\right)$:

Coupled angular momenta: semitoric polygon

The image of the momentum map for $\left(J, H_{t}\right)$:

The semitoric polygons for $\left(J, H_{1 / 2}\right)$:

Idea

Interpolate between systems "related to the semitoric polygons" to find desired semitoric system.

Semitoric families: definition

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems $\left(M, \omega, F_{t}\right)$, $0 \leq t \leq 1$, where

- $\operatorname{dim}(M)=4$;
- $F_{t}=\left(J, H_{t}\right)$;
- J generates an \mathbb{S}^{1}-action;
- $(t, p) \mapsto H_{t}(p)$ is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).

Semitoric families: definition

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems $\left(M, \omega, F_{t}\right)$, $0 \leq t \leq 1$, where

- $\operatorname{dim}(M)=4$;
- $F_{t}=\left(J, H_{t}\right)$;
- J generates an \mathbb{S}^{1}-action;
- $(t, p) \mapsto H_{t}(p)$ is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).
- Semitoric families (arXiv:1810.06915, to appear in Memoirs of the AMS)

Semitoric families: definition

Definition (Le Floch-P., 2018)

A semitoric family is a family of integrable systems $\left(M, \omega, F_{t}\right)$, $0 \leq t \leq 1$, where

- $\operatorname{dim}(M)=4$;
- $F_{t}=\left(J, H_{t}\right)$;
- J generates an \mathbb{S}^{1}-action;
- $(t, p) \mapsto H_{t}(p)$ is smooth.
- it is semitoric for all but finitely many values of t (called the degenerate times).
- Semitoric families (arXiv:1810.06915, to appear in Memoirs of the AMS)
- The behavior at the degenerate times can be very complicated!

Polygons in a semitoric family

- Invariance of polygon:

Lemma (Le Floch-P.)
The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

Polygons in a semitoric family

- Invariance of polygon:

Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

- But how does is change?

Polygons in a semitoric family

- Invariance of polygon:

Lemma (Le Floch-P.)

The polygon invariant and number of focus-focus points in a (simple) semitoric family can only change at degenerate times.

- But how does is change?

Lemma (Le Floch-P.)

Let $\left(M, \omega,\left(J, H_{t}\right)\right)$ be a semitoric transition family with degenerate times t^{-}and t^{+}. Roughly, the set of semitoric polygons for $t^{-}<t<t^{+}$is the union of the ones for $t<t^{-}$and $t>t^{+}$.

Polygons in a semitoric family

Polygons in a semitoric family

$$
t<t^{-} \quad t^{-}<t<t^{+} \quad t>t^{+}
$$

- For example, can we construct a system with the above polygons?

The first Hirzebruch surface

- Recall the first Hirzebruch surface, W_{1},

The first Hirzebruch surface

- Recall the first Hirzebruch surface, W_{1}, given by \mathbb{C}^{4} reduced by Hamiltonian torus action:

$$
N=(1 / 2)\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2},\left|u_{3}\right|^{2}+\left|u_{4}\right|^{2}\right) \text { at }(2,1) .
$$

- Usual toric system: $J=1 / 2\left|u_{2}\right|^{2}, H_{0}=1 / 2\left|u_{3}\right|^{2}$.

The first Hirzebruch surface

- Recall the first Hirzebruch surface, W_{1}, given by \mathbb{C}^{4} reduced by Hamiltonian torus action:

$$
N=(1 / 2)\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2},\left|u_{3}\right|^{2}+\left|u_{4}\right|^{2}\right) \text { at }(2,1) .
$$

- Usual toric system: $J=1 / 2\left|u_{2}\right|^{2}, H_{0}=1 / 2\left|u_{3}\right|^{2}$.
- Transition between H_{0} and $-H_{0}$.

The first Hirzebruch surface

- Recall the first Hirzebruch surface, W_{1}, given by \mathbb{C}^{4} reduced by Hamiltonian torus action:

$$
N=(1 / 2)\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2},\left|u_{3}\right|^{2}+\left|u_{4}\right|^{2}\right) \text { at }(2,1) .
$$

- Usual toric system: $J=1 / 2\left|u_{2}\right|^{2}, H_{0}=1 / 2\left|u_{3}\right|^{2}$.
- Transition between H_{0} and $-H_{0}$.

Example on W_{1}

Let $H_{t}=(1-t) H_{0}+t\left(-H_{0}+\gamma \operatorname{Re}\left(\bar{u}_{1} u_{3} \bar{u}_{4}\right)\right)$.
Theorem (Le Floch-P.)
$\left(J, H_{t}\right)$ is a semitoric transition family on W_{1}.

Example on W_{1}

Let $H_{t}=(1-t) H_{0}+t\left(-H_{0}+\gamma \operatorname{Re}\left(\bar{u}_{1} u_{3} \bar{u}_{4}\right)\right)$.

Theorem (Le Floch-P.)

$\left(J, H_{t}\right)$ is a semitoric transition family on W_{1}.

$t=0.429$

A system with two focus-focus points

- Another semitoric polygon:

A system with two focus-focus points

- Another semitoric polygon:

- Think about coupled angular momenta again:

A system with two focus-focus points

- Another semitoric polygon:

- Think about coupled angular momenta again:

- The point NS passes through the interior and becomes focus-focus, can we do this with SN as well?

The semitoric polygons

The semitoric polygons:

A two parameter family
Let $J=R_{1} z_{1}+R_{2} z_{2}$ and

$$
\left\{\begin{array}{l}
H_{0,0}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
H_{1,0}=z_{1} \\
H_{0,1}=z_{2} \\
H_{1,1}=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
\end{array}\right.
$$

and

A two parameter family
Let $J=R_{1} z_{1}+R_{2} z_{2}$ and

$$
\left\{\begin{array}{l}
H_{0,0}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
H_{1,0}=z_{1} \\
H_{0,1}=z_{2} \\
H_{1,1}=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
\end{array}\right.
$$

and
$H_{s_{1}, s_{2}}=\left(1-s_{2}\right)\left(\left(1-s_{1}\right) H_{0,0}+s_{1} H_{1,0}\right)+s_{2}\left(\left(1-s_{1}\right) H_{0,1}+s_{1} H_{1,1}\right)$.
Then

A two parameter family

Let $J=R_{1} z_{1}+R_{2} z_{2}$ and

$$
\left\{\begin{array}{l}
H_{0,0}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
H_{1,0}=z_{1} \\
H_{0,1}=z_{2} \\
H_{1,1}=x_{1} x_{2}+y_{1} y_{2}-z_{1} z_{2}
\end{array}\right.
$$

and
$H_{s_{1}, s_{2}}=\left(1-s_{2}\right)\left(\left(1-s_{1}\right) H_{0,0}+s_{1} H_{1,0}\right)+s_{2}\left(\left(1-s_{1}\right) H_{0,1}+s_{1} H_{1,1}\right)$.
Then

Theorem (Hohloch-P., 2018)

Let $R_{1}=1$ and $R_{2}=2$. Then $\left(J, H_{\frac{1}{2}, \frac{1}{2}}\right)$ is a semitoric integrable system with exactly two focus-focus points (and so is every system in an open neighborhood of these parameters).

The momentum map image

Image of $\left(J, H_{s_{1}, s_{2}}\right)$ for $s_{1}, s_{2} \in[0,1]$

Image of $\left(J, H_{s_{1}, s_{2}}\right)$ for $s_{1}, s_{2} \in[0,1]$

Image of $\left(J, H_{s_{1}, s_{2}}\right)$ for $s_{1}, s_{2} \in[0,1]$

Image of $\left(J, H_{s_{1}, s_{2}}\right)$ for $s_{1}, s_{2} \in[0,1]$

The momentum map image

Image of $\left(J, H_{s_{1}, s_{2}}\right)$ for $s_{1}, s_{2} \in[0,1]$

The semitoric polygons

The semitoric polygons:

Obstructions to this technique

- Example:

Obstructions to this technique

- Example:

- The right polygon does not correspond to a toric system!

Obstructions to this technique

- Example:

- The right polygon does not correspond to a toric system!
- This means we cannot use a semitoric transition family in the same way (when the focus-focus point collides with the boundary)

$Z_{k \text {-spheres }}$

- $F_{t}=\left(J, H_{t}\right)$ means that the underlying S^{1}-manifold (M, ω, J) is fixed.

Z_{k}-spheres

- $F_{t}=\left(J, H_{t}\right)$ means that the underlying S^{1}-manifold (M, ω, J) is fixed.
- The relationship between S^{1}-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.

Z_{k}-spheres

- $F_{t}=\left(J, H_{t}\right)$ means that the underlying S^{1}-manifold (M, ω, J) is fixed.
- The relationship between S^{1}-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.
- The preimage of this "line" is a Z_{2}-sphere.

Z_{k}-spheres

- $F_{t}=\left(J, H_{t}\right)$ means that the underlying S^{1}-manifold (M, ω, J) is fixed.
- The relationship between S^{1}-spaces and semitoric systems was studied by Hohloch-Sabatini-Sepe.
- The preimage of this "line" is a Z_{2}-sphere.

- Points in Z_{k}-spheres are automatically singular points of the integrable system, but in toric and semitoric systems lines of singular points cannot enter the interior of $F(M)$.

A system on $\mathbb{C P}^{2}$

- λ, δ, γ are parameters satisfying $0<\gamma<\frac{1}{4 \lambda}$ and $\delta>\frac{1}{2 \gamma \lambda}$.
- Let $M=\mathbb{C P}^{2}=N^{-1}(0) / S^{1}$ where

$$
N=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)-\lambda
$$

- λ, δ, γ are parameters satisfying $0<\gamma<\frac{1}{4 \lambda}$ and $\delta>\frac{1}{2 \gamma \lambda}$.
- Let $M=\mathbb{C P}^{2}=N^{-1}(0) / S^{1}$ where

$$
N=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)-\lambda
$$

- Let

$$
\left\{\begin{array}{l}
J=\frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) \\
\end{array}\right.
$$

- λ, δ, γ are parameters satisfying $0<\gamma<\frac{1}{4 \lambda}$ and $\delta>\frac{1}{2 \gamma \lambda}$.
- Let $M=\mathbb{C P}^{2}=N^{-1}(0) / S^{1}$ where

$$
N=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)-\lambda
$$

- Let

$$
\left\{\begin{array}{l}
J=\frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) \\
H_{t}=2 \gamma \delta t \lambda^{2}+(1-2 t) \frac{\left|z_{3}\right|^{2}}{2}+2 \gamma t\left(\operatorname{Re}\left(z_{1} z_{2} \bar{z}_{3}^{2}\right)-\frac{\delta}{4}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{2}\right)
\end{array}\right.
$$

- λ, δ, γ are parameters satisfying $0<\gamma<\frac{1}{4 \lambda}$ and $\delta>\frac{1}{2 \gamma \lambda}$.
- Let $M=\mathbb{C P}^{2}=N^{-1}(0) / S^{1}$ where

$$
N=\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)-\lambda
$$

- Let

$$
\left\{\begin{array}{l}
J=\frac{1}{2}\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) \\
H_{t}=2 \gamma \delta t \lambda^{2}+(1-2 t) \frac{\left|z_{3}\right|^{2}}{2}+2 \gamma t\left(\operatorname{Re}\left(z_{1} z_{2} \bar{z}_{3}^{2}\right)-\frac{\delta}{4}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)^{2}\right)
\end{array}\right.
$$

- last term "pushes" the Z_{2}-sphere to keep it on the boundary.

A system on $\mathbb{C P}^{2}$

- The image of $\left(J, H_{t}\right)$ for $0 \leq t \leq 1$:

A system on $\mathbb{C P}^{2}$

- The image of $\left(J, H_{t}\right)$ for $0 \leq t \leq 1$:

- The image of $\left(J, H_{t}\right)$ for $0 \leq t \leq 1$:

- For large t the system develops a flap, including hyperbolic-regular points and parabolic points
- The image of $\left(J, H_{t}\right)$ for $0 \leq t \leq 1$:

- For large t the system develops a flap, including hyperbolic-regular points and parabolic points
- the transition point still changes EE to FF to EE, but it can't merge with the bottom boundary (the Z_{2}-sphere) so instead it forms a flap.

A system on $\mathbb{C} \mathbb{P}^{2}$

Theorem (Le Floch-P., "2023")
The family $\left(\mathbb{C P}^{2}, n \omega_{F S}, F_{t}=\left(J, H_{t}\right)\right)_{0 \leq t \leq 1}$ is

- of toric type when $0 \leq t<t^{-}$,
- semitoric with one focus-focus point when $t^{-}<t<t^{+}$and
- hypersemitoric with one flap including a single elliptic corner when $t^{+}<t \leq 1$.

Theorem (Le Floch-P., "2023")

The family $\left(\mathbb{C P}^{2}, n \omega_{F S}, F_{t}=\left(J, H_{t}\right)\right)_{0 \leq t \leq 1}$ is

- of toric type when $0 \leq t<t^{-}$,
- semitoric with one focus-focus point when $t^{-}<t<t^{+}$and
- hypersemitoric with one flap including a single elliptic corner when $t^{+}<t \leq 1$.

Flaps in integrable systems

Fibers in a "flap"

Flaps in integrable systems

Fibers in a "flap"
EL

Flaps in integrable systems

Flaps in integrable systems

Flaps in integrable systems

Fibers in a "flap"

Flaps in integrable systems

Fibers in a "flap"
ni

Flaps in integrable systems

Fibers in a "flap"
E

Flaps in integrable systems

Further goals

- Find explicit systems for other semitoric systems

Further goals

- Find explicit systems for other semitoric systems
- Study bifurcations of semitoric systems (and their generalizations)

Further goals

- Find explicit systems for other semitoric systems
- Study bifurcations of semitoric systems (and their generalizations)
- Use semitoric polygons to investigate other properties of the system and underlying symplectic manifold (e.g. symplectic capacities)

Further goals

- Find explicit systems for other semitoric systems
- Study bifurcations of semitoric systems (and their generalizations)
- Use semitoric polygons to investigate other properties of the system and underlying symplectic manifold (e.g. symplectic capacities)
- Study various properties of the fibers (non-displacible?, Hamiltonian isotopic?, heavy or superheavy?, Floer theory?, etc...)

Theorem (Le Floch-P., "2023")

The family $\left(\mathbb{C P}^{2}, n \omega_{F S}, F_{t}=\left(J, H_{t}\right)\right)_{0 \leq t \leq 1}$ is

- of toric type when $0 \leq t<t^{-}$,
- semitoric with one focus-focus point when $t^{-}<t<t^{+}$and
- hypersemitoric with one flap including a single elliptic corner when $t^{+}<t \leq 1$.

Some extra slides

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?
- If $j \neq j_{\max / \min }$ and is regular then $M_{j}^{\text {red }}$ is diffeom. to \mathbb{S}^{2}.

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?
- If $j \neq j_{\max / \min }$ and is regular then $M_{j}^{\text {red }}$ is diffeom. to \mathbb{S}^{2}.
- If $j \neq j_{\max } / \min$ and is singular then $M_{j}^{\text {red }}$ is homeom. to \mathbb{S}^{2};

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?
- If $j \neq j_{\max / \min }$ and is regular then $M_{j}^{\text {red }}$ is diffeom. to \mathbb{S}^{2}.
- If $j \neq j_{\text {max }} / \min$ and is singular then $M_{j}^{\text {red }}$ is homeom. to \mathbb{S}^{2};
- If $j=j_{\max } / \min$ then $M_{j}^{\text {red }}$ is diffeomorphic to \mathbb{S}^{2} or a point.

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?
- If $j \neq j_{\max / \min }$ and is regular then $M_{j}^{\text {red }}$ is diffeom. to \mathbb{S}^{2}.
- If $j \neq j_{\max / \min }$ and is singular then $M_{j}^{\text {red }}$ is homeom. to \mathbb{S}^{2};
- If $j=j_{\max } / \min$ then $M_{j}^{\text {red }}$ is diffeomorphic to \mathbb{S}^{2} or a point.

Reduction by \mathbb{S}^{1}-action

- Reduce by the \mathbb{S}^{1}-action generated by J at level $J=j$ to get $M_{j}^{\text {red }}=J^{-1}(j) / \mathbb{S}^{1}$
- At regular values of J : non-degenerate $\Leftrightarrow H_{t}^{\text {red, } j}$ is Morse.
- What is $M_{j}^{\text {red }}$?
- If $j \neq j_{\max / \min }$ and is regular then $M_{j}^{\text {red }}$ is diffeom. to \mathbb{S}^{2}.
- If $j \neq j_{\text {max }} / \min$ and is singular then $M_{j}^{\text {red }}$ is homeom. to \mathbb{S}^{2};
- If $j=j_{\max } / \min$ then $M_{j}^{\text {red }}$ is diffeomorphic to \mathbb{S}^{2} or a point.

- If $d J_{j}=0$ get a 'teardrop' or 'pinched sphere' singular space.

Coupled angular momentum: reduction

$M_{j}^{\text {red }}$

singular fiber

Coupled angular momentum: reduction

$$
M_{j}^{\mathrm{red}}
$$

singular fiber

Coupled angular momentum: reduction

$M_{j}^{\text {red }}$

singular fiber

Coupled angular momentum: reduction

M_{j}^{red}

singular fiber

Coupled angular momentum: reduction

$M_{j}^{\text {red }}$

singular fiber

