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Context in a nutshell
Deformation quantization
A research program aiming at providing a rigorous framework for quantization. The main idea lies in the introduction of a formal deformation

parameter ~ allowing to distinguish between three layers of structures:

Classical ~0 Semi-classical ~1 Quantum ~n>1

Poisson manifolds Algebra of functions (C∞ (M) , ·) Poisson structure π Star product (C∞ (M) , ∗~)

Lie bialgebras Vector space g Lie bialgebra ([·, ·]g , δg) Quantum group (S(g), ∗~,∆~)

Formality theorem
The most important result in deformation quantization. Due to Kontsevich 97’, it provides a Lie∞quasi-isomorphism:

U : Tpoly
∼
−→ Dpolybetween

Tpoly the Schouten graded Lie algebra of polyvector fields on the affine space Rm (Poisson structures)

Dpoly the Hochschild differential graded Lie algebra of multidifferential operators on Rm (Star products)

Graph complexes GC

A (family of) of cochain complexes made of graphs in which the differential acts by blowing up edges, e.g. δ
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Grothendieck–Teichmüller group GRT1

An important (and still vastly mysterious) infinite-dimensional group — introduced by V. Drinfel’d (in its pro-unipotent version) based on ideas

of A. Grothendieck — acting on a wide variety of objects in many different mathematical contexts (e.g. the Kashiwara–Vergne conjecture,

multiple zeta values, rational homotopy of the E2 -operad, etc. ).



Deformation quantization and formality
Let (Rm, π) be a Poisson manifold. The Kontsevich’s star product formula reads at first orders:
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f ∗~ g
Quantum
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+ ~
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Higher orders

The resulting quantization formula is:

Associative i.e. (f ∗~ g) ∗~ h = f ∗~ (g ∗~ h)

Universal i.e. is valid for any Poisson bivector π, in any (finite) dimension m <∞

Transcendental i.e. involves integrals over configuration spaces of points

(or more generally, Drinfel’d associators)

Kontsevich’s quantization formula can be interpreted as the Feynman diagram expansion associated

with the BV quantization of the Poisson σ-model (with source of d = 2). Cattaneo, Felder 99’



Formality and graph complexes

Kontsevich graphs (from GC) act on admissible graphs (from the quantization formula):

GC × {Admissible graphs} → {Admissible graphs}
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Whenever the graph belongs to H0(GC2), the associativity of the star-product is preserved.

More generally, the exponential group exp
(
H0(GC2)

)
acts regularly on the space of universal

formality morphisms Dolgushev 11’.



Graph complexes and GRT1
The group GRT1 satisfies GRT1 = exp(grt1) with grt1 the Grothendieck–Teichmüller algebra.

As shown in Willwacher 10’:

H
0(GC2) ' grt1 .

Overall, we conclude that GRT1 acts regularly on the space of universal formality morphisms i.e.

formality maps form a GRT1-torsor.

U : Tpoly Dpoly
∼

	GRT1

This action of GRT1 can be traced back to an action of the graph complex GC2 on Tpoly:

GC2 → CE(Tpoly).

The cohomology of the graph complex provides information on aspects of the deformation

quantization problem:

Existence: Obstructions to the existence of universal formality maps live in H1(GC2)
?
' 0.

Classification: The space of universal formality maps is classified by H0(GC2) ' grt1.



Summary of this talk
Universal solutions to deformation quantization problems are characterised by the cohomology of

suitable graph complexes (denoted collectively GC):

Existence: Obstructions to the existence of universal solutions live in H1(GC).

Classification: The space of universal solutions is classified by H0(GC).

This approach has been successfully applied to the following deformation quantization problems:

Poisson manifolds (dim <∞) cf. Kontsevich 93’, Willwacher 10’

Poisson manifolds (dim =∞) cf. Penkava–Vanhaecke 98’, Shoikhet 08’, Willwacher 13’

Lie bialgebras cf. Merkulov–Willwacher 15’, 16’

The aim of this talk is to add two threads to this on-going story:

Lie bialgebroids

Quasi-Lie bialgebroids
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Lie bialgebroids Mackenzie, Xu 94’

A natural candidate to unify Poisson manifolds and Lie bialgebras is given by the notion of Lie

bialgebroid, i.e. a vector bundle E
π→M endowed with two Lie algebroid structures:

(ρ, [·, ·]E) on E

(R, [·, ·]E∗ ) on E∗
satisfying a (quadratic) compatibility condition.

Examples: Lie bialgebras, tangent bundle TM and cotangent bundle T∗M of a Poisson manifold

Lie bialgebroids can be naturally recast within graded geometry as Hamiltonian functions on the

graded symplectic manifold T∗[2]E[1] with symplectic 2-form ω = dxµ

0
∧ dpµ

2
+ dξa

1
∧ dζa

1
.

The corresponding graded Poisson bracket is called the “big-bracket” and denoted {·, ·}ω .

The Hamiltonian function reads D. Roytenberg 02, Y. Kosmann–Schwarzbach 05’:

H = ρa
µ(x) ξapµ −

1
2
f[ab]

c(x) ξaξbζc + R
a|µ(x) ζapµ −

1
2
Cc

[ab](x) ζaζbξc

where (ρ, f) are the structure constants of the Lie algebroid structure on E.

(R,C) ” ” ” E∗.

Imposing
{

H ,H
}
ω

= 0, one recovers the compatibility conditions between the two structures.



Lie bialgebroids Mackenzie, Xu 94’

A natural candidate to unify Poisson manifolds and Lie bialgebras is given by the notion of Lie

bialgebroid, i.e. a vector bundle E
π→M endowed with two Lie algebroid structures:

(ρ, [·, ·]E) on E

(R, [·, ·]E∗ ) on E∗
satisfying a (quadratic) compatibility condition.

Examples: Lie bialgebras, tangent bundle TM and cotangent bundle T∗M of a Poisson manifold

Lie bialgebroids can be naturally recast within graded geometry as Hamiltonian functions on the

graded symplectic manifold T∗[2]E[1] with symplectic 2-form ω = dxµ

0
∧ dpµ

2
+ dξa

1
∧ dζa

1
.

The corresponding graded Poisson bracket is called the “big-bracket” and denoted {·, ·}ω .

The Hamiltonian function reads D. Roytenberg 02, Y. Kosmann–Schwarzbach 05’:

H = ρa
µ(x) ξapµ −

1
2
f[ab]

c(x) ξaξbζc + R
a|µ(x) ζapµ −

1
2
Cc

[ab](x) ζaζbξc

Examples
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c
ξ
a
ξ
b
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c

Poisson manifolds H = ξ
µ
pµ + π

µν(x) ζµpν −
1
2
∂λπ

µν(x) ζµζνξλ
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Adding terms to the Hamiltonian function allows to deform the notion of Lie bialgebroid:

quasi-Lie bialgebroid: 1
6ψ[abc](x) ξaξbξc

Lie-quasi bialgebroid: 1
6ϕ

[abc](x) ζaζbζc

Examples: quasi-Lie bialgebras, twisted Poisson manifolds



Deformation quantization of Lie bialgebroids
The deformation quantization problem for Lie bialgebroids is due to Xu 97’. The associated quantum

object is an (associative) bialgebroid unifying the notions of star product and bialgebra.

The quantization problem for Lie bialgebroids reads

Classical ~0 Semi-classical ~1 Quantum ~n>1

Lie bialgebroids Vector bundle E
π→M Lie bialgebroid (ρ, [·, ·]E , R, [·, ·]E∗ ) Quantum groupoid (S(E), ∗~,∆~, α~, β~)

and is still open, in full generality, although some particular cases are known to be quantizable

(Lie bialgebras, Lie bialgebroids associated to Poisson manifolds, triangular Lie bialgebroids, see Xu 97’, Calaque 04’).

By analogy with the Poisson and Lie bialgebra cases, one can formulate the two natural conjectures:

Existence: Every Lie bialgebroid is quantizable as a quantum groupoid. Xu 97’

Classification: The space of quantizations is a GRT1-torsor.

These are hard conjectures and arguably not much progress has been made since their formulation.

Can graph complexes provide some insights?



Climbing the dimension ladder
Graphs come in various flavors, depending on the sort of geometric structures they act on:

Poisson manifolds (dim < ∞): Directed graphs (d = 2)

Lie bialgebras: Oriented graphs (d = 3) i.e. graphs without cycles
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Examples of cycle graphs
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Examples of oriented graphs

The cohomology of the graph complexes depend on both d and the number c of oriented colors:

H
•(GCcd) ' H•(GCc+1

d+1) Willwacher 13’, Živković 17’

This allows to yield novel incarnations of familiar structures in higher dimension d:

Examples

grt1 ' × ' H0(GC2)
Poisson manifolds dim<∞

' H0(GC1
3)

Lie bialgebras

' . . .

K ' H1(GC1)
Moyal star commutator

' H1(GC1
2)

Poisson manifolds dim=∞
' H1(GC2

3)
?

' . . .



Graph actions on Lie bialgebroids K.M. 22’

In order to define a graph action on Lie bialgebroids, we need to resort to two-colored graphs:

1 2

3
Lie bialgebroids : Two-colored graphs with two oriented directions (d = 3, c = 2)

Quasi-Lie bialgebroids : Two-colored graphs with one oriented direction (d = 3, c = 1)

The quantization problem for Lie bialgebroids is akin to the one for Poisson manifolds in dim =∞.

Theorem
The deformation complex of Lie bialgebroids is endowed with an exotic

Lie∞-structure deforming non-trivially the so-called “big bracket”.
No-go

The quantization problem for quasi-Lie bialgebroids is akin to the one for Poisson manifolds in dim <∞.

Theorem
The Grothendieck–Teichmüller group acts via Lie∞-automorphisms

on the deformation complex of quasi-Lie bialgebroids.
Yes-go



Summary and outlook
Deformation quantization problems can be partitioned into different categories according to the

cohomology of the graph complexes acting on them:

H1(GC)
?
' 0 (Yes-go) H1(GC) ' K (No-go)

H0(GC) ' grt1 H0(GC) ' 0

d = 2 Poisson (dim <∞) Poisson (dim =∞)

d = 3

Lie bialgebras

Quasi-Lie bialgebras

Quasi-Lie bialgebroids Lie bialgebroids

The quantization problem for Lie bialgebroids differs essentially from the Lie bialgebra case:

1 There is a potential obstruction to the existence of universal quantizations of Lie bialgebroids.

2 The Grothendieck–Teichmüller group plays no classifying rôle.

This result allows us to formulate the following conjecture (No-go):

There are no universal quantizations of Lie bialgebroids as quantum groupoids.
Settling this question requires a better understanding of the deformation theory of bialgebroids.
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The quantization problem for quasi-Lie bialgebroids is similar to the the (quasi)-Lie bialgebra case:

1 There is (conjecturally) no generic obstruction to the existence of universal quantizations.

2 The Grothendieck–Teichmüller group plays a classifying rôle.

This result allows us to formulate the following conjecture (Yes-go):

Given a Drinfel’d associator, one can define a universal quantization of (quasi-)Lie bialgebroids

as quasi-quantum groupoids.
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Appendices



Graph actions on geometric structures
Graded geometric formulation of Lie bialgebroids and variations

See e.g. D. Roytenberg 02, Y. Kosmann–Schwarzbach 05’

Let E
π→M be a vector bundle and consider the graded symplectic manifold T∗[2]E[1]

with symplectic 2-form ω = dxµ

0
∧ dpµ

2
+ dξa

1
∧ dζa

1
.

The corresponding graded Poisson bracket is called the “big-bracket” and denoted {·, ·}ω .

The most general function of degree 3 on T∗[2]E[1] reads:

H = ρa
µ
ξ
a
pµ −

1
2
f[ab]

c
ξ
a
ξ
b
ζc + R

a|µ
ζapµ −

1
2
Cc

[ab]
ζaζbξ

c +
1
6
ϕ

[abc]
ζaζbζc +

1
6
ψ[abc]ξ

a
ξ
b
ξ
c

where {ρ, f, R,C, ϕ, ψ} are functions on the base space M .

Imposing
{

H ,H
}
ω

= 0, the functions {ρ, f, R,C, ϕ, ψ} define the following structures:

In the most generic case, the structure defined is a proto-Lie bialgebroid.

If ψabc ≡ 0, “ Lie-quasi bialgebroid.

If ϕabc ≡ 0, “ quasi-Lie bialgebroid.

If ψabc ≡ 0, ϕabc ≡ 0, “ Lie bialgebroid.

To each of these three sub-cases corresponds a graded Poisson subalgebra of C∞ (T∗[2]E[1]),

denoted AELie-quasi, A
E
quasi-Lie and AELie, respectively.



Graph actions on geometric structures
Lie bialgebroids and variations (d = 3)

Let E
π→M be a vector bundle and consider the graded symplectic manifold T∗[2]E[1]

with symplectic 2-form ω = dxµ

0
∧ dpµ

2
+ dξa

1
∧ dζa

1
.

The graded manifold contains two sets of dual coordinates {xµ, pµ} and {ξa, ζa}.

In order to define a graph action on C∞ (T∗[2]E[1]), we need to resort to two-colored graphs:

1 2

3
We define a representation of the 2-colored operad Gra2

3 on the space of graded functions

on T∗[2]E[1] as follows:

Explicitly, i j is mapped to
∂(i)
∂xµ

∂(j)
∂pµ

while i j gets mapped to
∂(i)
∂ξa

∂(j)
∂ζa

.

Example 1 2 (f1 ⊗ f2) =
∂(1)
∂xµ

∂(2)
∂pµ

∂(1)
∂ξa

∂(2)
∂ζa

(f1 ⊗ f2) = (−1)|f1|
∂2f1

∂xµ∂ξa
∂2f2

∂pµ∂ζa

Crucial observation: The presence of a red cycle prevents this graph to preserve the deformation

complex of quasi-Lie bialgebroids (hence of Lie bialgebroids).

Example Acting on f1 ∼ ξζζ and f2 = pζζ ∈ AEquasi-Lie, we get 1 2 (f1 ⊗ f2) = ζζζ /∈ AEquasi-Lie

Preserving the graded Poisson subalgebras AELie-quasi, A
E
quasi-Lie and AELie requires orienting colors.



Graph actions on geometric structures
Lie bialgebroids and variations (d = 3)
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1
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3
We define a representation of the 2-colored operad Gra2

3 on the space of graded functions

C∞ (T∗[2]E[1]) as follows:

Explicitly, i j is mapped to
∂(i)
∂xµ

∂(j)
∂pµ

while i j gets mapped to
∂(i)
∂ξa

∂(j)
∂ζa

.

Theorem

C∞ (T∗[2]E[1]) is endowed with an action of the plain operad Gra2|0
3 .

AELie-quasi “ black-oriented operad Gra2|black
3 .

AEquasi-Lie “ red-oriented operad Gra2|red
3 .

AELie “ bi-oriented operad Gra2|2
3 .

K.M. 22’



Classification of quantization problems

H1(GC)
?
' 0 H1(GC) ' K H1(GC) ' 0

H0(GC) ' grt1 H0(GC) ' 0 H0(GC) ' K

d = 2 Poisson (dim <∞) Poisson (dim =∞)

d = 3

Lie bialgebras

Proto-Lie bialgebrasLie-quasi bialgebras

Quasi-Lie bialgebras

Lie-quasi bialgebroids
Lie bialgebroids Proto-Lie bialgebroids

Quasi-Lie bialgebroids

Courant algebroids



Conjectures


