Poisson Maps between Character Varieties

Joint work with Indranil Biswas, Jacques Hurtubise and Sean Lawton

arXiv:2104.05589 J. Symplectic Geom., accepted 2022

- 1. Introduction
- 2. General results on character varieties
- 3. Poisson structures
- 4. Maps between surfaces
- 5. Construction of Poisson structures
- 6. Capping
- 7. Gluing via symplectic quotients

1. Introduction

- Let Σ_1 and Σ_2 be two surfaces (possibly with boundary).
- Let G be a reductive Lie group (or a compact Lie group).
- Define

$$X(\Sigma_1) = \operatorname{Hom}(\pi_1, G)/G$$

(and similarly for Σ_2), where π_1 is the fundamental group of Σ_1 and π_2 is the fundamental group of Σ_2 . Here G acts by conjugation.

- The spaces $X(\Sigma_j)$ are Poisson manifolds. (If the boundary of Σ_j is empty, then $X(\Sigma_j)$ is symplectic.)
- Suppose $\Sigma_1 \subset \Sigma_2$. Let $f: \Sigma_1 \to \Sigma_2$ be the inclusion map.
- Then f induces a morphism

$$\Phi: X(\Sigma_2) \to X(\Sigma_1),$$

where

$$\Phi = f_*.$$

Here we are thinking of

$$X(\Sigma_1) = \operatorname{Hom}(\pi_1, G)/G.$$

- Strictly speaking $f_* : \operatorname{Hom}(\pi_2, G) \to \operatorname{Hom}(\pi_1, G)$ but this map is equivariant with respect to conjugation by an element of G.
- Sometimes we will denote a surface of genus g with n boundary components by $\Sigma_{n,g}$.
- We will denote $X(\Sigma_{n,g})$ by $X_{n,g}$.
- We will show that the map Φ is Poisson.

3. Poisson structures

• In local complex coordinates z_i , the Poisson bivector on the character variety is written

$$\sum_{i,j} a_{i,j} \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}.$$

Here $a_{i,j}$ is a function of the z_i .

• Suppose α, β are based loops in Σ_1 , giving rise to elements $[\alpha], [\beta]$ in $\pi_1(\Sigma)$. WLOG these based loops intersect in transverse double points.

- Let $\alpha \cap \beta$ denote the set of double point intersections.
- Let $\epsilon(\pi, \alpha, \beta)$ be the intersection number at $p \in \alpha \cap \beta$ and let α_p denote the curve α based at p.
- Let $\mathcal{R}: \pi \to G$ be a representation.
- Then define $f_{\alpha}(\mathcal{R}) = f(\mathcal{R}(\alpha))$, where $f : G \to \mathbb{C}$.

• Let $A \in G$. Define F(A) (an element of the Lie algebra of G) by

$$\langle F(A), X \rangle = \frac{d}{dt}|_{t=0} f\Big((\exp tX)A\Big)$$

where $\langle \cdot, \cdot \rangle$ is an Ad -invariant inner product on the Lie algebra of G and X is an element of the Lie algebra of G.

• Here for G = U(n) and G = SU(n) and f(A) = Re(TraceA) we have $F(A) = \frac{1}{2}(A - A^{-1})$. It can be shown that this is an element of the Lie algebra of G.

- Denote the fundamental group of the surface by π .
- When \mathcal{R} is a homomorphism from π to G, the Poisson bracket is defined by

$$\{f_{\alpha}(\mathcal{R}), g_{\beta}(\mathcal{R})\} = \sum_{p} \epsilon(p, \alpha, \beta) < F(\mathcal{R}(\alpha)), G(\mathcal{R}(\beta)) > .$$

Recall that $\epsilon(p, \alpha, \beta)$ is the intersection number of the 1-cycles α and β at the intersection point p.

• Here we sum over points p where α and β intersect.

4. Maps between surfaces

• Suppose $q: \Sigma_1 \to \Sigma_2$ is a continuous map. Then there is an induced homomorphism of fundamental groups and a continuous map from $\operatorname{Hom}(\pi_1(\Sigma_2), G)$ to $\operatorname{Hom}(\pi_1(\Sigma_1), G)$, which descends to character varieties. This gives rise to a map $q_*: X(\Sigma_2) \to X(\Sigma_1)$.

Theorem [Goldman 1984, 1986]: Let $q: \Sigma_1 \to \Sigma_2$ be a continuous map of compact orientable surfaces that preserves transversality of based loops and preserves double points.

Then the induced map of coordinate rings q^* from coordinate rings $\mathbf{C}[X(\Sigma_1)]$ to $\mathbf{C}[X(\Sigma_2)]$ is a morphism of Poisson algebras if q preserves orientation and an anti-Poisson morphism if q reverses orientations.

• The Poisson bracket on $X(\Sigma)$ is given by Lawton 2009 (n > 0), Goldman 1986 $(n = 0, g \ge 2)$ and Sikora 2014 (n = 0, g = 1). For n = 1, g = 1 the Poisson bi-vector was computed (for SL(2, C)) by Goldman (2006) and (for SL(3, C)) by Lawton (2009).

• For SL(2, C), Goldman (2006) also found the Poisson bi-vector for g = 0, n = 4and g = 1, n = 2.

5. Construction of Poisson structure

- Now assume the surface is an open smooth manifold (instead of a manifold with boundary).
- \bullet Assume G is compact or reductive (the complexification of a compact Lie group).
- Fix a base point. A homomorphism \mathcal{R} from π to G is called reductive if the Zariski closure of its image in G is a reductive subgroup. (This condition is always satisfied if G is compact.)
- Let G be a Lie group. Then $X_{n,g}$ is the quotient (by conjugation) of the space of reductive homomorphisms of the fundamental group of a surface $\Sigma_{n,g}$ with genus g and n boundary components into G.
- A G-connection on Σ_1 (resp. Σ_2) is a smooth principal G-bundle E_G on the surface Σ_1 (resp. Σ_2) equipped with a connection.
- Let E be a vector bundle over Σ_1 (resp. Σ_2) associated to the principal bundle E_G through the adjoint representation.
- Poincaré duality tells us that the tangent space to the character variety $X_{n,g}$ is (as usual) the compactly supported first cohomology $H_c^1(\Sigma, E)$.

- There is a natural homomorphism from $T^*X(\Sigma, G)$ to $TX(\Sigma, G)$ (or equivalently a 2-form on $X(\Sigma)$).
- This is given by taking the inner product of a 1-form on Σ with a compactly supported 1-form on Σ to form a compactly supported 2-form on Σ , which is then integrated over Σ .
- Denote this homomorphism by $\Theta: T^*X_{n,g} \to TX_{n,g}$, or equivalently $\Theta \in \Omega^2 X_{n,g}$.
- If Σ is a compact oriented surface, the 2-form Θ coincides with the symplectic structure constructed by Atiyah-Bott and Goldman.

Suppose Σ_1 is embedded as a connected open subset of Σ_2 . The restriction map from Σ_2 to Σ_1 gives a map

$$\Phi: X_{n_2,g_2} \to X_{n_1,g_1}.$$

• We have maps

$$\beta: H^1(\Sigma_2, E) \to H^1(\Sigma_1, E)$$

(from restriction)

$$\gamma: H^1_c(\Sigma_1, E) \to H^1_c(\Sigma_2, E)$$

(compact support).

• The map β is the same as the map $d\Phi$. This map results from pulling back 1-forms under the inclusion map from Σ_1 to Σ_2 .

• The map γ coincides with $(d\Phi)^*$. This map results from pushing forward from Σ_1 to Σ_2 under the inclusion map.

Theorem: The map Φ is Poisson.

• A map $F: A \to B$ is Poisson (for Poisson manifolds A and B) if and only if

$$dF \circ \Theta_A \circ (dF)^* \cong \Theta_B$$

where $\Theta_A : T_x^* A \to T_x A$ is the Poisson structure (similarly for B).

• Let

$$\phi: \Sigma_1 \to \Sigma_2$$

be a (possibly ramified) covering map). Define a map $\Psi : X(\Sigma_2) \to X(\Sigma_1)$ that is given by pushing forward the fundamental group under ϕ from Σ_1 to Σ_2 .

Theorem: The map Ψ is Poisson.

The proof uses that $d\Psi$ sends a cohomology class to its pullback under ϕ .

The map dual to $d\Phi$ sends a compactly supported 1-form to the sum of its pullback over inverse image points under the map ϕ . This form is also compactly supported.

6. Capping

Let Σ_1 be a 2-manifold with boundary. Let Σ_2 be a 2-manifold obtained by capping the boundary components as described below. We obtain a map $\Phi: X(\Sigma_2) \to X(\Sigma_1)$ as described earlier.

(a) Capping with disks: Φ is an injection. The image is the union of a family of symplectic leaves.

(b) Capping with a cylinder (gluing the two boundary components of the cylinder

to two components of the boundary of the surface).

This produces a surface with two less boundary components and genus one higher.

The two character varieties have the same dimension.

(c) Capping with k-holed sphere:

The resulting surface has k less boundary components, and genus k-1 more.

(d) Capping one boundary component with a genus 1 curve:

If G is semisimple, then the map Φ is surjective.

(e) Capping with an *n*-punctured genus 1 curve:

7. Gluing via symplectic quotients.

Two collections of spaces whose quotients are character varieties:

(a) q-Hamiltonian spaces (Alekseev-Malkin-Meinrenken 1998):

• Let D(G) be $G \times G$, with a $G \times G$ -action. This space is called the double. Let $\mathbf{D}(G)$ also be $G \times G$, with a G-action. This space is called the internal fusion of the double.

• The action of $G \times G$ on the double D(G) is by

$$(g_1, g_2) : (a, b) \mapsto (g_1 a g_2^{-1}, g_2 b g_1^{-1}).$$

• The 2-form on the double is

$$\frac{1}{2}(a^*\theta, b^*\overline{\theta}) + \frac{1}{2}(a^*\overline{\theta}, b^*\theta).$$

• The internal fusion $\mathbf{D}(G)$ is just $G \times G$ with the G action

 $g: (a, b) \mapsto (\mathrm{Ad}_g(a), \mathrm{Ad}_g(b)).$

• The 2-form on the internal fusion $\mathbf{D}(G)$ is

$$\omega = \frac{1}{2}(a^*\theta, b^*\bar{\theta}) + \frac{1}{2}(a^*\bar{\theta}, b^*\theta) + \frac{1}{2}\Big((ab)^*\theta, (a^{-1}b^{-1})^*\bar{\theta}\Big).$$

• Here θ is the left Maurer-Cartan form and $\overline{\theta}$ is the right Maurer-Cartan form. Here θ is often written as $\theta = a^{-1}da$ if $a \in G$. • The q-Hamiltonian space $D(G)^r \times (\mathbf{D}(G))^g$ is $G^{2(g+r)}$ with the q-Hamiltonian action of $(z_0, \ldots, z_r) \in G^{r+1}$ given by

$$a_i \mapsto \operatorname{Ad}_{z_0} a_i$$
$$b_i \mapsto \operatorname{Ad}_{z_0} b_i$$
$$u_j \mapsto z_0 u_j (z_j)^{-1}$$
$$v_j \mapsto z_j v_j (z_j)^{-1}$$

 $(j = 1, \dots, r; i = 1, \dots, g)$

• This space is equipped with a 2-form (playing the role of symplectic form) and moment maps

$$\mu_j(a, b, u, v) = (v_j)^{-1} \quad (j = 1, \dots, r)$$

$$\mu_0(a, b, u, v) = \operatorname{Ad}_{u_1}(v_1) \dots \operatorname{Ad}_{u_r}(v_r)[a_1, b_1] \dots [a_g, b_g].$$

- Here we have used the notation a, b to refer to the tuple $(a_1, \ldots, a_g, b_1, \ldots, b_g)$.
- Similarly the notation u, v refers to the tuple $(u_1, \ldots, u_r, v_1, \ldots, v_r)$.
- [a, b] denotes $aba^{-1}b^{-1}$ for $a, b \in H$.

• To form a Poisson manifold by gluing two boundary components of a connected surface, we set the values of the moment maps corresponding to those two components to be equal and then take the quotient by the diagonal action of the group.

• To form a Poisson manifold by gluing boundary components of two different surfaces, we set the moment maps on the two q-Hamiltonian spaces to be equal and take the quotient by the diagonal action of the group.

• This procedure can be iterated. If all boundary components are glued together, we recover a symplectic manifold.

References

- [AMM] A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Diff. Geom. 48 (1998) 445–495.
- [Gol1] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200–225.
- [Gol2] W. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, *Invent. Math.* 85 (1986), 263–302.
- [Gol3] W. Goldman, Mapping class group dynamics on surface group representations. *Problems on mapping class groups and related topics*, 189–214, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006.
- [Je] L. C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces, Math. Ann. 298 (1994), 667–692.
- [La3] S. Lawton, Poisson geometry of SL(3, C)-character varieties relative to a surface with boundary, Trans. Amer. Math. Soc. 361 (2009), 2397–2429.

- [La4] S. Lawton, Obtaining the one-holed torus from pants: duality in an SL(3,C)-character variety, *Pacific J. Math.* 242 (2009), 131–142.
- [Sik2] A. Sikora, Character varieties of abelian groups, Math. Zeit. 277 (2014), 241–256.