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1. Introduction

• Let Σ1 and Σ2 be two surfaces (possibly with boundary).

• Let G be a reductive Lie group (or a compact Lie group).

• Define

X(Σ1) = Hom(π1, G)/G

(and similarly for Σ2), where π1 is the fundamental group of Σ1 and π2 is the

fundamental group of Σ2. Here G acts by conjugation.

• The spaces X(Σj) are Poisson manifolds. (If the boundary of Σj is empty, then

X(Σj) is symplectic.)

• Suppose Σ1 ⊂ Σ2. Let f : Σ1 → Σ2 be the inclusion map.

• Then f induces a morphism

Φ : X(Σ2) → X(Σ1),

where

Φ = f∗.

Here we are thinking of

X(Σ1) = Hom(π1, G)/G.



• Strictly speaking f∗ : Hom(π2, G) → Hom(π1, G) but this map is equivariant

with respect to conjugation by an element of G.

• Sometimes we will denote a surface of genus g with n boundary components by

Σn,g.

• We will denote X(Σn,g) by Xn,g.

• We will show that the map Φ is Poisson.



3. Poisson structures

• In local complex coordinates zi, the Poisson bivector on the character variety is

written
∑

i,j

ai,j
∂

∂zi
∧

∂

∂zj
.

Here ai,j is a function of the the zi.

• Suppose α,β are based loops in Σ1, giving rise to elements [α], [β] in π1(Σ).

WLOG these based loops intersect in transverse double points.

• Let α ∩ β denote the set of double point intersections.

• Let ε(π,α,β) be the intersection number at p ∈ α ∩ β and let αp denote the

curve α based at p.

• Let R : π → G be a representation.

• Then define fα(R) = f(R(α)), where f : G → C.



• Let A ∈ G. Define F (A) (an element of the Lie algebra of G) by

< F (A), X >=
d

dt
|t=0f

(

(exp tX)A
)

where < ·, · > is an Ad -invariant inner product on the Lie algebra of G and X is

an element of the Lie algebra of G.

• Here for G = U(n) and G = SU(n) and f(A) = Re(TraceA) we have

F (A) = 1
2(A−A−1). It can be shown that this is an element of the Lie algebra of

G.

• Denote the fundamental group of the surface by π.

• When R is a homomorphism from π to G, the Poisson bracket is defined by

{fα(R), gβ(R)} =
∑

p

ε(p,α,β) < F (R(α)), G(R(β)) > .

Recall that ε(p,α,β) is the intersection number of the 1-cycles α and β at the

intersection point p.

• Here we sum over points p where α and β intersect.



4. Maps between surfaces

• Suppose q : Σ1 → Σ2 is a continuous map. Then there is an induced

homomorphism of fundamental groups and a continuous map from

Hom(π1(Σ2), G) to Hom(π1(Σ1), G), which descends to character varieties. This

gives rise to a map q∗ : X(Σ2) → X(Σ1).

Theorem [Goldman 1984, 1986]: Let q : Σ1 → Σ2 be a continuous map of

compact orientable surfaces that preserves transversality of based loops and

preserves double points.

Then the induced map of coordinate rings q∗ from coordinate rings C[X(Σ1)] to

C[X(Σ2)] is a morphism of Poisson algebras if q preserves orientation and an

anti-Poisson morphism if q reverses orientations.

• The Poisson bracket on X(Σ) is given by Lawton 2009 (n > 0), Goldman 1986

(n = 0, g ≥ 2) and Sikora 2014 (n = 0, g = 1). For n = 1, g = 1 the Poisson

bi-vector was computed (for SL(2, C)) by Goldman (2006) and (for SL(3, C)) by

Lawton (2009).

• For SL(2, C), Goldman (2006) also found the Poisson bi-vector for g = 0, n = 4

and g = 1, n = 2.



5. Construction of Poisson structure

• Now assume the surface is an open smooth manifold (instead of a manifold with

boundary).

• Assume G is compact or reductive (the complexification of a compact Lie

group).

• Fix a base point. A homomorphism R from π to G is called reductive if the

Zariski closure of its image in G is a reductive subgroup. (This condition is

always satisfied if G is compact.)

• Let G be a Lie group. Then Xn,g is the quotient (by conjugation) of the space

of reductive homomorphisms of the fundamental group of a surface Σn,g with

genus g and n boundary components into G.

• A G-connection on Σ1 (resp. Σ2) is a smooth principal G-bundle EG on the

surface Σ1 (resp. Σ2) equipped with a connection.

• Let E be a vector bundle over Σ1 (resp. Σ2) associated to the principal bundle

EG through the adjoint representation.

• Poincaré duality tells us that the tangent space to the character variety Xn,g is

(as usual) the compactly supported first cohomology H1
c (Σ, E).



• There is a natural homomorphism from T ∗X(Σ, G) to TX(Σ, G) (or

equivalently a 2-form on X(Σ)).

• This is given by taking the inner product of a 1-form on Σ with a compactly

supported 1-form on Σ to form a compactly supported 2-form on Σ, which is then

integrated over Σ.

• Denote this homomorphism by Θ : T ∗Xn,g → TXn,g, or equivalently

Θ ∈ Ω2Xn,g.

• If Σ is a compact oriented surface, the 2-form Θ coincides with the symplectic

structure constructed by Atiyah-Bott and Goldman.



Suppose Σ1 is embedded as a connected open subset of Σ2. The restriction map

from Σ2 to Σ1 gives a map

Φ : Xn2,g2 → Xn1,g1 .

• We have maps

β : H1(Σ2, E) → H1(Σ1, E)

(from restriction)

γ : H1
c (Σ1, E) → H1

c (Σ2, E)

(compact support).

• The map β is the same as the map dΦ. This map results from pulling back

1-forms under the inclusion map from Σ1 to Σ2.

• The map γ coincides with (dΦ)∗. This map results from pushing forward from

Σ1 to Σ2 under the inclusion map.



Theorem: The map Φ is Poisson.

• A map F : A → B is Poisson (for Poisson manifolds A and B) if and only if

dF ◦ΘA ◦ (dF )∗ ∼= ΘB

where ΘA : T ∗

xA → TxA is the Poisson structure (similarly for B).

• Let

φ : Σ1 → Σ2

be a (possibly ramified) covering map). Define a map Ψ : X(Σ2) → X(Σ1) that is

given by pushing forward the fundamental group under φ from Σ1 to Σ2.

Theorem: The map Ψ is Poisson.

The proof uses that dΨ sends a cohomology class to its pullback under φ.

The map dual to dΦ sends a compactly supported 1-form to the sum of its

pullback over inverse image points under the map φ. This form is also compactly

supported.



6. Capping

Let Σ1 be a 2-manifold with boundary. Let Σ2 be a 2-manifold obtained by

capping the boundary components as described below. We obtain a map

Φ : X(Σ2) → X(Σ1) as described earlier.

(a) Capping with disks: Φ is an injection. The image is the union of a family of

symplectic leaves.

(b) Capping with a cylinder (gluing the two boundary components of the cylinder



to two components of the boundary of the surface).

This produces a surface with two less boundary components and genus one

higher.

The two character varieties have the same dimension.



(c) Capping with k-holed sphere:

The resulting surface has k less boundary components, and genus k − 1 more.

The map Φ is not surjective. (k =D



(d) Capping one boundary component with a genus 1 curve:

0¥



If G is semisimple, then the map Φ is surjective.

(e) Capping with an n-punctured genus 1 curve:

Proposition: The map Φ is surjective and Poisson.

-
m ?



7. Gluing via symplectic quotients.

Two collections of spaces whose quotients are character varieties:

(a) q-Hamiltonian spaces (Alekseev-Malkin-Meinrenken 1998):

• Let D(G) be G×G, with a G×G-action. This space is called the double. Let

D(G) also be G×G, with a G-action. This space is called the internal fusion of

the double.

• The action of G×G on the double D(G) is by

(g1, g2) : (a, b) +→ (g1ag
−1
2 , g2bg

−1
1 ).

• The 2-form on the double is

1

2
(a∗θ, b∗θ̄) +

1

2
(a∗θ̄, b∗θ).



• The internal fusion D(G) is just G×G with the G action

g : (a, b) +→ (Adg(a),Adg(b)).

• The 2-form on the internal fusion D(G) is

ω =
1

2
(a∗θ, b∗θ̄) +

1

2
(a∗θ̄, b∗θ) +

1

2

(

(ab)∗θ, (a−1b−1)∗θ̄
)

.

• Here θ is the left Maurer-Cartan form and θ̄ is the right Maurer-Cartan form.

Here θ is often written as θ = a−1da if a ∈ G.



• The q-Hamiltonian space D(G)r × (D(G))g is G2(g+r) with the q-Hamiltonian

action of (z0, . . . , zr) ∈ Gr+1 given by

ai +→ Adz0ai

bi +→ Adz0bi

uj +→ z0uj(zj)
−1

vj +→ zjvj(zj)
−1

(j = 1, . . . , r; i = 1, . . . , g)

• This space is equipped with a 2-form (playing the role of symplectic form) and

moment maps

µj(a, b, u, v) = (vj)
−1 (j = 1, . . . , r)

µ0(a, b, u, v) = Adu1
(v1) . . .Adur

(vr)[a1, b1] . . . [ag, bg].

• Here we have used the notation a, b to refer to the tuple (a1, . . . , ag, b1, . . . , bg).

• Similarly the notation u, v refers to the tuple (u1, . . . , ur, v1, . . . , vr).

• [a, b] denotes aba−1b−1 for a, b ∈ H.



• To form a Poisson manifold by gluing two boundary components of a connected

surface, we set the values of the moment maps corresponding to those two

components to be equal and then take the quotient by the diagonal action of the

group.

• To form a Poisson manifold by gluing boundary components of two different

surfaces, we set the moment maps on the two q-Hamiltonian spaces to be equal

and take the quotient by the diagonal action of the group.

• This procedure can be iterated. If all boundary components are glued together,

we recover a symplectic manifold.

me
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