Poisson Maps between Character Varieties

Joint work with Indranil Biswas, Jacques Hurtubise and Sean Lawton

arXiv:2104.05589 *J. Symplectic Geom.*, accepted 2022
1. Introduction
2. General results on character varieties
3. Poisson structures
4. Maps between surfaces
5. Construction of Poisson structures
6. Capping
7. Gluing via symplectic quotients
1. Introduction

- Let Σ_1 and Σ_2 be two surfaces (possibly with boundary).
- Let G be a reductive Lie group (or a compact Lie group).
- Define
 \[X(\Sigma_1) = \text{Hom}(\pi_1, G)/G \]
 (and similarly for Σ_2), where π_1 is the fundamental group of Σ_1 and π_2 is the fundamental group of Σ_2. Here G acts by conjugation.
- The spaces $X(\Sigma_j)$ are Poisson manifolds. (If the boundary of Σ_j is empty, then $X(\Sigma_j)$ is symplectic.)
- Suppose $\Sigma_1 \subset \Sigma_2$. Let $f : \Sigma_1 \to \Sigma_2$ be the inclusion map.
- Then f induces a morphism
 \[\Phi : X(\Sigma_2) \to X(\Sigma_1), \]
 where
 \[\Phi = f_*. \]
 Here we are thinking of
 \[X(\Sigma_1) = \text{Hom}(\pi_1, G)/G. \]
• Strictly speaking $f_\ast : \text{Hom}(\pi_2, G) \to \text{Hom}(\pi_1, G)$ but this map is equivariant with respect to conjugation by an element of G.

• Sometimes we will denote a surface of genus g with n boundary components by $\Sigma_{n,g}$.

• We will denote $X(\Sigma_{n,g})$ by $X_{n,g}$.

• We will show that the map Φ is Poisson.
3. Poisson structures

- In local complex coordinates z_i, the Poisson bivector on the character variety is written
 \[\sum_{i,j} a_{i,j} \frac{\partial}{\partial z_i} \wedge \frac{\partial}{\partial z_j}. \]
 Here $a_{i,j}$ is a function of the z_i.

- Suppose α, β are based loops in Σ_1, giving rise to elements $[\alpha], [\beta]$ in $\pi_1(\Sigma)$. WLOG these based loops intersect in transverse double points.

- Let $\alpha \cap \beta$ denote the set of double point intersections.

- Let $\epsilon(\pi, \alpha, \beta)$ be the intersection number at $p \in \alpha \cap \beta$ and let α_p denote the curve α based at p.

- Let $\mathcal{R} : \pi \to G$ be a representation.

- Then define $f_\alpha(\mathcal{R}) = f(\mathcal{R}(\alpha))$, where $f : G \to \mathbb{C}$.
• Let $A \in G$. Define $F(A)$ (an element of the Lie algebra of G) by

$$< F(A), X > = \frac{d}{dt}|_{t=0} f \left((\exp tX)A \right)$$

where $< \cdot, \cdot >$ is an Ad -invariant inner product on the Lie algebra of G and X is an element of the Lie algebra of G.

• Here for $G = U(n)$ and $G = SU(n)$ and $f(A) = \text{Re}(\text{Trace}A)$ we have $F(A) = \frac{1}{2}(A - A^{-1})$. It can be shown that this is an element of the Lie algebra of G.

• Denote the fundamental group of the surface by π.

• When \mathcal{R} is a homomorphism from π to G, the Poisson bracket is defined by

$$\{f_\alpha(\mathcal{R}), g_\beta(\mathcal{R})\} = \sum_p \epsilon(p, \alpha, \beta) \ < F(\mathcal{R}(\alpha)), G(\mathcal{R}(\beta)) > .$$

Recall that $\epsilon(p, \alpha, \beta)$ is the intersection number of the 1-cycles α and β at the intersection point p.

• Here we sum over points p where α and β intersect.
4. Maps between surfaces

• Suppose $q : \Sigma_1 \rightarrow \Sigma_2$ is a continuous map. Then there is an induced homomorphism of fundamental groups and a continuous map from $\text{Hom}(\pi_1(\Sigma_2), G)$ to $\text{Hom}(\pi_1(\Sigma_1), G)$, which descends to character varieties. This gives rise to a map $q^* : X(\Sigma_2) \rightarrow X(\Sigma_1)$.

Theorem [Goldman 1984, 1986]: *Let $q : \Sigma_1 \rightarrow \Sigma_2$ be a continuous map of compact orientable surfaces that preserves transversality of based loops and preserves double points.*

Then the induced map of coordinate rings q^* from coordinate rings $\mathbb{C}[X(\Sigma_1)]$ to $\mathbb{C}[X(\Sigma_2)]$ is a morphism of Poisson algebras if q preserves orientation and an anti-Poisson morphism if q reverses orientations.

• The Poisson bracket on $X(\Sigma)$ is given by Lawton 2009 ($n > 0$), Goldman 1986 ($n = 0, g \geq 2$) and Sikora 2014 ($n = 0, g = 1$). For $n = 1, g = 1$ the Poisson bi-vector was computed (for $SL(2, \mathbb{C})$) by Goldman (2006) and (for $SL(3, \mathbb{C})$) by Lawton (2009).

• For $SL(2, \mathbb{C})$, Goldman (2006) also found the Poisson bi-vector for $g = 0, n = 4$ and $g = 1, n = 2$.
5. Construction of Poisson structure

- Now assume the surface is an open smooth manifold (instead of a manifold with boundary).

- Assume G is compact or reductive (the complexification of a compact Lie group).

- Fix a base point. A homomorphism \mathcal{R} from π to G is called reductive if the Zariski closure of its image in G is a reductive subgroup. (This condition is always satisfied if G is compact.)

- Let G be a Lie group. Then $X_{n,g}$ is the quotient (by conjugation) of the space of reductive homomorphisms of the fundamental group of a surface $\Sigma_{n,g}$ with genus g and n boundary components into G.

- A G-connection on Σ_1 (resp. Σ_2) is a smooth principal G-bundle E_G on the surface Σ_1 (resp. Σ_2) equipped with a connection.

- Let E be a vector bundle over Σ_1 (resp. Σ_2) associated to the principal bundle E_G through the adjoint representation.

- Poincaré duality tells us that the tangent space to the character variety $X_{n,g}$ is (as usual) the compactly supported first cohomology $H^1_c(\Sigma, E)$.
There is a natural homomorphism from $T^*X(\Sigma, G)$ to $TX(\Sigma, G)$ (or equivalently a 2-form on $X(\Sigma)$).

This is given by taking the inner product of a 1-form on Σ with a compactly supported 1-form on Σ to form a compactly supported 2-form on Σ, which is then integrated over Σ.

Denote this homomorphism by $\Theta : T^*X_{n,g} \rightarrow TX_{n,g}$, or equivalently $\Theta \in \Omega^2 X_{n,g}$.

If Σ is a compact oriented surface, the 2-form Θ coincides with the symplectic structure constructed by Atiyah-Bott and Goldman.
Suppose Σ_1 is embedded as a connected open subset of Σ_2. The restriction map from Σ_2 to Σ_1 gives a map

$$\Phi : X_{n_2, g_2} \to X_{n_1, g_1}.$$

- We have maps

 $$\beta : H^1(\Sigma_2, E) \to H^1(\Sigma_1, E)$$

 (from restriction)

 $$\gamma : H^1_c(\Sigma_1, E) \to H^1_c(\Sigma_2, E)$$

 (compact support).

- The map β is the same as the map $d\Phi$. This map results from pulling back 1-forms under the inclusion map from Σ_1 to Σ_2.

- The map γ coincides with $(d\Phi)^*$. This map results from pushing forward from Σ_1 to Σ_2 under the inclusion map.
Theorem: The map Φ is Poisson.

• A map $F : A \to B$ is Poisson (for Poisson manifolds A and B) if and only if

$$dF \circ \Theta_A \circ (dF')^* \cong \Theta_B$$

where $\Theta_A : T^*_x A \to T_x A$ is the Poisson structure (similarly for B).

• Let

$$\phi : \Sigma_1 \to \Sigma_2$$

be a (possibly ramified) covering map. Define a map $\Psi : X(\Sigma_2) \to X(\Sigma_1)$ that is given by pushing forward the fundamental group under ϕ from Σ_1 to Σ_2.

Theorem: The map Ψ is Poisson.

The proof uses that $d\Psi$ sends a cohomology class to its pullback under ϕ.

The map dual to $d\Phi$ sends a compactly supported 1-form to the sum of its pullback over inverse image points under the map ϕ. This form is also compactly supported.
6. Capping

Let Σ_1 be a 2-manifold with boundary. Let Σ_2 be a 2-manifold obtained by capping the boundary components as described below. We obtain a map $\Phi : X(\Sigma_2) \to X(\Sigma_1)$ as described earlier.

(a) Capping with disks: Φ is an injection. The image is the union of a family of symplectic leaves.

(b) Capping with a cylinder (gluing the two boundary components of the cylinder
to two components of the boundary of the surface).

This produces a surface with two less boundary components and genus one higher.

The two character varieties have the same dimension.
(c) Capping with k-holed sphere:

The resulting surface has k less boundary components, and genus $k - 1$ more.

The map Φ is not surjective.
(d) Capping one boundary component with a genus 1 curve:
If G is semisimple, then the map Φ is surjective.

(e) Capping with an n-punctured genus 1 curve:

Proposition: The map Φ is surjective and Poisson.
7. Gluing via symplectic quotients.

Two collections of spaces whose quotients are character varieties:

(a) q-Hamiltonian spaces (Alekseev-Malkin-Meinrenken 1998):

- Let $D(G)$ be $G \times G$, with a $G \times G$-action. This space is called the double. Let $D(G)$ also be $G \times G$, with a G-action. This space is called the internal fusion of the double.

- The action of $G \times G$ on the double $D(G)$ is by

\[(g_1, g_2) : (a, b) \mapsto (g_1 a g_2^{-1}, g_2 b g_1^{-1})\].

- The 2-form on the double is

\[\frac{1}{2} (a^* \theta, b^* \bar{\theta}) + \frac{1}{2} (a^* \bar{\theta}, b^* \theta)\].
• The internal fusion $\mathbf{D}(G)$ is just $G \times G$ with the G action

$$g : (a, b) \mapsto (\text{Ad}_g(a), \text{Ad}_g(b)).$$

• The 2-form on the internal fusion $\mathbf{D}(G)$ is

$$\omega = \frac{1}{2}(a^* \theta, b^* \bar{\theta}) + \frac{1}{2}(a^* \bar{\theta}, b^* \theta) + \frac{1}{2} \left((ab)^* \theta, (a^{-1}b^{-1})^* \bar{\theta}\right).$$

• Here θ is the left Maurer-Cartan form and $\bar{\theta}$ is the right Maurer-Cartan form. Here θ is often written as $\theta = a^{-1} da$ if $a \in G$.
• The q-Hamiltonian space $D(G)^r \times (D(G))^g$ is $G^{2(g+r)}$ with the q-Hamiltonian action of $(z_0, \ldots, z_r) \in G^{r+1}$ given by

\begin{align*}
a_i &\mapsto \text{Ad}_{z_0} a_i \\
b_i &\mapsto \text{Ad}_{z_0} b_i \\
u_j &\mapsto z_0 u_j (z_j)^{-1} \\
v_j &\mapsto z_j v_j (z_j)^{-1}
\end{align*}

($j = 1, \ldots, r; \ i = 1, \ldots, g$)

• This space is equipped with a 2-form (playing the role of symplectic form) and moment maps

\begin{align*}
\mu_j(a, b, u, v) &= (v_j)^{-1} \quad (j = 1, \ldots, r) \\
\mu_0(a, b, u, v) &= \text{Ad}_{u_1}(v_1) \ldots \text{Ad}_{u_r}(v_r)[a_1, b_1] \ldots [a_g, b_g].
\end{align*}

• Here we have used the notation a, b to refer to the tuple $(a_1, \ldots, a_g, b_1, \ldots, b_g)$.

• Similarly the notation u, v refers to the tuple $(u_1, \ldots, u_r, v_1, \ldots, v_r)$.

• $[a, b]$ denotes $aba^{-1}b^{-1}$ for $a, b \in H$.
• To form a Poisson manifold by gluing two boundary components of a connected surface, we set the values of the moment maps corresponding to those two components to be equal and then take the quotient by the diagonal action of the group.

• To form a Poisson manifold by gluing boundary components of two different surfaces, we set the moment maps on the two \(q \)-Hamiltonian spaces to be equal and take the quotient by the diagonal action of the group.

• This procedure can be iterated. If all boundary components are glued together, we recover a symplectic manifold.
References

