Duistermaat-Heckman measures for Hamiltonian groupoid actions

Luka Zwaan

March 18, 2023

Luka Zwaan (UIUC)

DH for groupoid actions

March 18, 2023

$$\mu_{\mathsf{DH}}^{\omega} := \mu_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}} \right) = \mathsf{vol}_{\mathsf{red}} \cdot \mu_{\mathsf{Leb}}$$

$$\mu_{\mathsf{DH}}^{\omega} := \mu_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}} \right) = \mathsf{vol}_{\mathsf{red}} \cdot \mu_{\mathsf{Leb}}$$

Here vol_{red} associates to ξ ∈ t^{*} the symplectic volume of μ⁻¹(ξ)/T;

$$\mu_{\mathsf{DH}}^{\omega} := \mu_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}} \right) = \mathsf{vol}_{\mathsf{red}} \cdot \mu_{\mathsf{Leb}}$$

Here vol_{red} associates to ξ ∈ t* the symplectic volume of μ⁻¹(ξ)/T;
It is a *polynomial* on t*.

$$\mu_{\mathsf{DH}}^{\omega} := \mu_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}} \right) = \mathsf{vol}_{\mathsf{red}} \cdot \mu_{\mathsf{Leb}}$$

Here vol_{red} associates to ξ ∈ t* the symplectic volume of μ⁻¹(ξ)/T;
It is a *polynomial* on t*.

Goal: extend this to (suitable) Hamiltonian actions of symplectic groupoids.

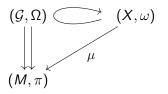
- Basics of Hamiltonian actions of symplectic groupoids;
- ② Duistermaat-Heckman measures for PMCTs;
- In the second second
 - The free case;
 - The locally free case.

Symplectic groupoids and their Hamiltonian actions

A symplectic groupoid is a Lie groupoid G ⇒ M with a multiplicative symplectic form Ω ∈ Ω²(G);

Symplectic groupoids and their Hamiltonian actions

- A symplectic groupoid is a Lie groupoid G ⇒ M with a multiplicative symplectic form Ω ∈ Ω²(G);
- An action



is called Hamiltonian if $a^*\omega = \operatorname{pr}_1^*\Omega + \operatorname{pr}_2^*\omega \in \Omega^2(\mathcal{G}_{\mathbf{s}} \times_{\mu} X).$

• A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;

- A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;
 - In this talk: s-properness;

- A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;
 - In this talk: s-properness;
- In the regular case, one has analogues of the Duistermaat-Heckman results:

- A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;
 - In this talk: s-properness;
- In the regular case, one has analogues of the Duistermaat-Heckman results:
 - The leaf space is an integral affine orbifold;

- A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;
 - In this talk: s-properness;
- In the regular case, one has analogues of the Duistermaat-Heckman results:
 - The leaf space is an integral affine orbifold;
 - There is "linear variation" wrt this structure;

- A PMCT is a Poisson manifold which can be integrated by a s-connected symplectic groupoid with some compactness type;
 - In this talk: s-properness;
- In the regular case, one has analogues of the Duistermaat-Heckman results:
 - The leaf space is an integral affine orbifold;
 - There is "linear variation" wrt this structure;
 - There is a polynomial Duistermaat-Heckman measure on the leaf space.

• Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:
 - IAS is presented by a lattice $\Lambda \subset \nu^*(\mathcal{F}_{\pi}) \implies$ density ρ_{aff} on $\nu(\mathcal{F}_{\pi})$;

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:
 - IAS is presented by a lattice $\Lambda \subset \nu^*(\mathcal{F}_{\pi}) \implies$ density ρ_{aff} on $\nu(\mathcal{F}_{\pi})$;
 - This defines a measure $\mu_{\rm aff}$ on the leaf space;

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:
 - IAS is presented by a lattice $\Lambda \subset \nu^*(\mathcal{F}_{\pi}) \implies$ density ρ_{aff} on $\nu(\mathcal{F}_{\pi})$;
 - This defines a measure $\mu_{\rm aff}$ on the leaf space;
 - Explicitly, it arises on M as the measure μ_M associated to the density

$$\rho_M = \frac{\left|\omega_{\mathcal{F}_{\pi}}^{\mathsf{top}}\right|}{\mathsf{top!}} \otimes \rho_{\mathsf{aff}};$$

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:
 - IAS is presented by a lattice $\Lambda \subset \nu^*(\mathcal{F}_{\pi}) \implies$ density ρ_{aff} on $\nu(\mathcal{F}_{\pi})$;
 - This defines a measure $\mu_{\rm aff}$ on the leaf space;
 - Explicitly, it arises on M as the measure μ_M associated to the density

$$\rho_{M} = \frac{\left|\omega_{\mathcal{F}_{\pi}}^{\mathsf{top}}\right|}{\mathsf{top!}} \otimes \rho_{\mathsf{aff}};$$

• They are related by

$$p_*\mu_M = \operatorname{vol} \cdot \mu_{\operatorname{aff}}$$

- Let $(\mathcal{G}, \Omega) \rightrightarrows (M, \pi)$ be regular, s-connected and s-proper;
- Affine measure on the leaf space:
 - IAS is presented by a lattice $\Lambda \subset \nu^*(\mathcal{F}_{\pi}) \implies$ density ρ_{aff} on $\nu(\mathcal{F}_{\pi})$;
 - This defines a measure $\mu_{\rm aff}$ on the leaf space;
 - Explicitly, it arises on M as the measure μ_M associated to the density

$$\rho_{M} = \frac{\left|\omega_{\mathcal{F}_{\pi}}^{\mathsf{top}}\right|}{\mathsf{top!}} \otimes \rho_{\mathsf{aff}};$$

• They are related by

$$p_*\mu_M = \operatorname{vol} \cdot \mu_{\operatorname{aff}}$$

• Here $p: M \to B$ is projection to the leaf space, and vol associates to $b \in B$

connected comp's of isotropy \times symplectic volume of leaf;

• The Duistermaat-Heckman measure is defined as

$$\mu_{\mathsf{DH}}^{\Omega} := (p \circ \mathbf{s})_{*} \left(rac{\Omega^{\mathsf{top}}}{\mathsf{top!}}
ight);$$

3 N 3

• The Duistermaat-Heckman measure is defined as

$$\mu^{\Omega}_{\mathsf{DH}} := (p \circ \mathbf{s})_{*} \left(rac{\Omega^{\mathsf{top}}}{\mathsf{top!}}
ight);$$

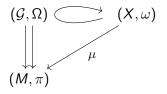
Theorem (Crainic, Fernandes, Martínez-Torres)

We have

$$\mu_{\rm DH}^{\Omega} = {\rm vol}^2 \cdot \mu_{\rm aff}.$$

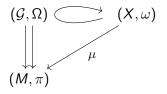
Moreover, vol is a polynomial on B.

• Suppose now we have a free Hamiltonian action



with $\mathcal{G} \rightrightarrows M$ regular, **s**-connected and **s**-proper and μ proper with connected fibres;

• Suppose now we have a free Hamiltonian action

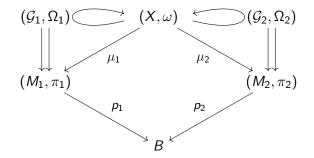


with $\mathcal{G} \rightrightarrows M$ regular, **s**-connected and **s**-proper and μ proper with connected fibres;

Then X/G is a regular Poisson manifold of s-proper type and the integration ((X _μ×_μ X)/G, ω ⊕ −ω) is symplectically Morita equivalent to (G, Ω).

Hamiltonian actions: the free case

• One can show that given a symplectic Morita equivalence



between regular, $\boldsymbol{s}\text{-connected}$ and $\boldsymbol{s}\text{-proper}$ groupoids, we have

$$\mu_{\mathsf{DH}}^{\omega} := (p_i \circ \mu_i)_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}}\right) = \mathsf{vol}_1 \cdot \mathsf{vol}_2 \cdot \mu_{\mathsf{aff}};$$

Hamiltonian actions: the locally free case

• When the action is only locally free, the quotient X/G is in general not smooth;

Hamiltonian actions: the locally free case

- When the action is only locally free, the quotient X/G is in general not smooth;
- It is still a Poisson orbifold, presented by

 $\mathcal{G} \ltimes X \rightrightarrows (X, \mathbb{L});$

- When the action is only locally free, the quotient X/G is in general not smooth;
- It is still a Poisson orbifold, presented by

 $\mathcal{G} \ltimes X \rightrightarrows (X, \mathbb{L});$

• Here $\mathbb{L} = \{v + w + i_w \omega \mid v \in T\mathcal{O}, w \in \ker(d\mu)\}$ is the (regular) Dirac structure presenting the Poisson structure;

- When the action is only locally free, the quotient X/G is in general not smooth;
- It is still a Poisson orbifold, presented by

 $\mathcal{G} \ltimes X \rightrightarrows (X, \mathbb{L});$

- Here $\mathbb{L} = \{v + w + i_w \omega \mid v \in T\mathcal{O}, w \in \ker(d\mu)\}$ is the (regular) Dirac structure presenting the Poisson structure;
- The leaf space of \mathbb{L} can be thought of as the leaf space of X/\mathcal{G} .

$$(\mu^*\mathcal{G} = X_{\mu} \times_{\mathbf{t}} \mathcal{G}_{\mathbf{s}} \times_{\mu} X, \omega \oplus -\Omega \oplus -\omega) \rightrightarrows (X, \mathbb{L})$$

is a presymplectic groupoid integrating it;

$$(\mu^*\mathcal{G} = X_{\mu} \times_{\mathbf{t}} \mathcal{G}_{\mathbf{s}} \times_{\mu} X, \omega \oplus -\Omega \oplus -\omega) \rightrightarrows (X, \mathbb{L})$$

is a presymplectic groupoid integrating it;

• This gives the leaf space an integral affine orbifold structure;

$$(\mu^*\mathcal{G} = X_{\mu} \times_{\mathbf{t}} \mathcal{G}_{\mathbf{s}} \times_{\mu} X, \omega \oplus -\Omega \oplus -\omega) \rightrightarrows (X, \mathbb{L})$$

is a presymplectic groupoid integrating it;

- This gives the leaf space an integral affine orbifold structure;
 - There is then also the affine measure μ_{aff} ;

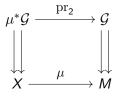
$$(\mu^*\mathcal{G} = X_{\mu} \times_{\mathbf{t}} \mathcal{G}_{\mathbf{s}} \times_{\mu} X, \omega \oplus -\Omega \oplus -\omega) \rightrightarrows (X, \mathbb{L})$$

is a presymplectic groupoid integrating it;

- This gives the leaf space an integral affine orbifold structure;
 - There is then also the affine measure $\mu_{\rm aff};$
- We can once again define μ_{DH}^{ω} as the pushforward of $\frac{\omega^{top}}{top!}$.

Hamiltonian actions: the locally free case

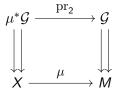
• The Morita equivalence



induces an isomorphism of the leaf spaces as integral affine orbifolds;

Hamiltonian actions: the locally free case

• The Morita equivalence



induces an isomorphism of the leaf spaces as integral affine orbifolds;

Hence

$$\mu_{\mathsf{DH}}^{\omega} = (p \circ \mu)_* \left(\frac{\omega^{\mathsf{top}}}{\mathsf{top!}}\right).$$

Luka Zwaan (UIUC)

Proposition

We have

$$u_{\rm DH}^{\omega} = \text{vol} \cdot \text{vol}_{\rm red} \cdot \mu_{\rm aff},$$

where $\operatorname{vol}_{\operatorname{red}}$ associates to $b \in B$

connected comp's of isotropy \times symplectic volume of reduced space.

Moreover, vol_{red} is a polynomial on B.

Are there any questions?

• • • • • • • •

æ