Higher vector bundles

Matias del Hoyo (UFF)
based on joint work with G. Trentinaglia (IST)

Gone Fishing 2023
Mar 2023, Amherst-MA, USA

1. Representations as simplicial vector bundles
2. Filling horns in geometry and algebra
3. The semi-direct product construction
4. Representations as simplicial vector bundles

- 1.1 Lie groupoids representations
- 1.2 Representations up to homotopy
- 1.3 Equivalent approaches (problem)
- 1.4 Our Main Theorem (solution)
- 1.5 Relation with literature

1.1 Lie groupoid representations

A representation $R: G \curvearrowright E$ of a Lie groupoid $G_{1} \rightrightarrows G_{0}$ over a vector bundle $E \rightarrow G_{0}$ smoothly gives a linear isomorphism $R^{g}: E^{x} \rightarrow E^{y}$ for each $y \stackrel{g}{\stackrel{g}{\bullet}} x \in G_{1}$ and satisfies $R^{u_{x}}=\operatorname{id}_{E^{x}}$ and $R^{h} R^{g}=R^{h g}$

1.1 Lie groupoid representations

A representation $R: G \curvearrowright E$ of a Lie groupoid $G_{1} \rightrightarrows G_{0}$ over a vector bundle $E \rightarrow G_{0}$ smoothly gives a linear isomorphism $R^{g}: E^{x} \rightarrow E^{y}$ for each $y \stackrel{g}{\stackrel{g}{\curvearrowleft}} x \in G_{1}$ and satisfies $R^{u_{x}}=\operatorname{id}_{E^{x}}$ and $R^{h} R^{g}=R^{h g}$

Example

Vector bundles, Lie group representations, equivariant and foliated vector bundles, descent data

1.1 Lie groupoid representations

A representation $R: G \curvearrowright E$ of a Lie groupoid $G_{1} \rightrightarrows G_{0}$ over a vector bundle $E \rightarrow G_{0}$ smoothly gives a linear isomorphism $R^{g}: E^{x} \rightarrow E^{y}$ for each $y \stackrel{g}{\stackrel{g}{-}} x \in G_{1}$ and satisfies $R^{u_{x}}=\operatorname{id}_{E^{x}}$ and $R^{h} R^{g}=R^{h g}$

Example

Vector bundles, Lie group representations, equivariant and foliated vector bundles, descent data

Proposition

To give a representation $R: G \curvearrowright E$ is the same as:
a) A degree 1 differential on $C(G, E)$ satisfying Leibniz and preserving normalized cochains
b) A VB-groupoid with trivial core $q: V \rightarrow G$ such that $V_{0}=E$
c) A Lie groupoid morphism $\rho: G \rightarrow G L(E)$ into the general linear groupoid

1.1 Lie groupoid representations

A representation $R: G \curvearrowright E$ of a Lie groupoid $G_{1} \rightrightarrows G_{0}$ over a vector bundle $E \rightarrow G_{0}$ smoothly gives a linear isomorphism $R^{g}: E^{x} \rightarrow E^{y}$ for each $y \stackrel{g}{\stackrel{g}{-}} x \in G_{1}$ and satisfies $R^{u_{x}}=\operatorname{id}_{E^{x}}$ and $R^{h} R^{g}=R^{h g}$

Example

Vector bundles, Lie group representations, equivariant and foliated vector bundles, descent data

Proposition

To give a representation $R: G \curvearrowright E$ is the same as:
a) A degree 1 differential on $C(G, E)$ satisfying Leibniz and preserving normalized cochains
b) A VB-groupoid with trivial core $q: V \rightarrow G$ such that $V_{0}=E$
c) A Lie groupoid morphism $\rho: G \rightarrow G L(E)$ into the general linear groupoid

Representations are scarce! Lack of adjoint rep. no Tannaka duality, ...

1.2 Representations up to homotopy [AriasAbad-Crainic]

Given G Lie groupoid, an m-simplex $g \in G_{m}$ on its nerve is

1.2 Representations up to homotopy [AriasAbad-Crainic]

Given G Lie groupoid, an m-simplex $g \in G_{m}$ on its nerve is

$$
\underbrace{x_{m} \stackrel{g_{m}}{\leftarrow} x_{m-1} \stackrel{g_{m-1}}{\longleftarrow} \ldots \stackrel{g_{r+1}}{\leftarrow}}_{t_{m-r}(g)} x_{r} \underbrace{\stackrel{g_{r}}{\longleftarrow} \ldots \stackrel{g_{2}}{\leftrightarrows} x_{1} \stackrel{g_{1}}{\leftarrow} x_{0}}_{s_{r}(g)}
$$

Let $E=\bigoplus_{n=0}^{N} E_{n} \rightarrow G_{0}$ be a graded vector bundle. A RUTH $R: G \curvearrowright E$ smoothly gives $R_{m}^{g}: E_{n}^{s_{0}(g)} \rightarrow E_{n+m}^{t_{0}(g)}, g \in G_{m}$, such that
$-R_{1}^{u(x)}=\operatorname{id}_{E^{x},}, x \in G_{0}$, and $R_{m}^{u_{j}(g)}=0, g \in G_{m-1}, m>1$

- $\sum_{i=1}^{m-1}(-1)^{i} R_{m-1}^{d_{i}(g)}=\sum_{r=0}^{m}(-1)^{r} R_{m-r}^{t_{m-r}(g)} R_{r}^{s_{r}(g)}, g \in G_{m}$

1.2 Representations up to homotopy [AriasAbad-Crainic]

Given G Lie groupoid, an m-simplex $g \in G_{m}$ on its nerve is

$$
\underbrace{x_{m} \stackrel{g_{m}}{\leftarrow} x_{m-1} \stackrel{g_{m-1}}{\leftarrow} \ldots \stackrel{g_{r+1}}{\leftarrow}}_{t_{m-r}(g)} \times \underbrace{\stackrel{g_{r}}{\leftarrow} \ldots \frac{g_{2}}{\leftarrow} x_{1} \stackrel{g_{1}}{\leftarrow} x_{0}}_{s_{r}(g)}
$$

Let $E=\bigoplus_{n=0}^{N} E_{n} \rightarrow G_{0}$ be a graded vector bundle. A RUTH $R: G \curvearrowright E$ smoothly gives $R_{m}^{g}: E_{n}^{s_{0}(g)} \rightarrow E_{n+m}^{t_{0}(g)}, g \in G_{m}$, such that
$-R_{1}^{u(x)}=\operatorname{id}_{E^{x},}, x \in G_{0}$, and $R_{m}^{u_{j}(g)}=0, g \in G_{m-1}, m>1$

- $\sum_{i=1}^{m-1}(-1)^{i} R_{m-1}^{d_{i}(g)}=\sum_{r=0}^{m}(-1)^{r} R_{m-r}^{t_{m-r}(g)} R_{r}^{s_{r}(g)}, g \in G_{m}$

Low degrees: - R_{0}^{\times}chain differential on the fiber E^{x}

- R_{1}^{g} chain map between fibers $E^{x} \rightarrow E^{y}$
- $R_{2}^{g_{2}, g_{1}}$ chain homotopy $R_{1}^{g_{2} g_{1}} \Rightarrow R_{1}^{g_{2}} R_{1}^{g_{1}}$

1.2 Representations up to homotopy [AriasAbad-Crainic]

Given G Lie groupoid, an m-simplex $g \in G_{m}$ on its nerve is

$$
\underbrace{x_{m} \stackrel{g_{m}}{\leftarrow} x_{m-1} \stackrel{g_{m-1}}{\leftarrow} \ldots \stackrel{g_{r+1}}{\leftarrow}}_{t_{m-r}(g)} \times r \underbrace{\stackrel{g_{r}}{\longleftarrow} \ldots \stackrel{g_{2}}{\leftarrow} x_{1} \stackrel{g_{1}}{\leftarrow} x_{0}}_{s_{r}(g)}
$$

Let $E=\bigoplus_{n=0}^{N} E_{n} \rightarrow G_{0}$ be a graded vector bundle. A RUTH $R: G \curvearrowright E$ smoothly gives $R_{m}^{g}: E_{n}^{s_{0}(g)} \rightarrow E_{n+m}^{t_{0}(g)}, g \in G_{m}$, such that

- $R_{1}^{u(x)}=\operatorname{id}_{E^{x},}, x \in G_{0}$, and $R_{m}^{u_{j}(g)}=0, g \in G_{m-1}, m>1$
- $\sum_{i=1}^{m-1}(-1)^{i} R_{m-1}^{d_{i}(g)}=\sum_{r=0}^{m}(-1)^{r} R_{m-r}^{t_{m-r}(g)} R_{r}^{s_{r}(g)}, g \in G_{m}$

Low degrees: - R_{0}^{\times}chain differential on the fiber E^{x}

- R_{1}^{g} chain map between fibers $E^{x} \rightarrow E^{y}$
- $R_{2}^{g_{2}, g_{1}}$ chain homotopy $R_{1}^{g_{2} g_{1}} \Rightarrow R_{1}^{g_{2}} R_{1}^{g_{1}}$

Paradigmatic examples: Adjoint and co-adjoint representations of a Lie groupoid (rule deformations, appear in Bott's spectral sequence)

1.3 Equivalent approaches (problem)

DGAs

A RUTH is the same as a degree 1 differential on $C^{p}(G, E)=\bigoplus_{m-n=p} \Gamma\left(G_{m} ; t_{0}^{*} E_{n}\right)$ satisfying Leibniz and preserving normalized cochains [AriasAbad-Crainic]

1.3 Equivalent approaches (problem)

DGAs

A RUTH is the same as a degree 1 differential on $C^{p}(G, E)=\bigoplus_{m-n=p} \Gamma\left(G_{m} ; t_{0}^{*} E_{n}\right)$ satisfying Leibniz and preserving normalized cochains [AriasAbad-Crainic]

Fibrations

- $\mathrm{N}=1$: A 2-term RUTH is the same as a VB-groupoid $q: V \rightarrow G$ endowed with a cleavage [GraciaSaz-Mehta]
- General: Today's Talk [dH-T]

1.3 Equivalent approaches (problem)

DGAs

A RUTH is the same as a degree 1 differential on $C^{p}(G, E)=\bigoplus_{m-n=p} \Gamma\left(G_{m} ; t_{0}^{*} E_{n}\right)$ satisfying Leibniz and preserving normalized cochains [AriasAbad-Crainic]

Fibrations

- $\mathrm{N}=1$: A 2-term RUTH is the same as a VB-groupoid $q: V \rightarrow G$ endowed with a cleavage [GraciaSaz-Mehta]
- General: Today's Talk [dH-T]

Classifying maps

- $\mathrm{N}=1$: A 2-term RUTH is the same as a pseudo-functor $\rho: G \rightarrow G L\left(E_{1} \oplus E_{0}\right)$ into the general linear 2-groupoid [dH-Stefani]
- General: yet to be done...

1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle $q: V \rightarrow G$ is a simplicial vector bundle over the nerve that is also a simplicial fibration.

1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle $q: V \rightarrow G$ is a simplicial vector bundle over the nerve that is also a simplicial fibration.

Theorem (dH-Trentinaglia)
Given G a Lie groupoid and $E=\bigoplus_{n=0}^{N} E_{n}$ a graded vector bundle, there is a 1-1 correspondence between ruth $R: G \curvearrowright E$ and higher vector bundles $q: V \rightarrow G$ with core E admitting a normal coherent cleavage.

1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle $q: V \rightarrow G$ is a simplicial vector bundle over the nerve that is also a simplicial fibration.

Theorem (dH-Trentinaglia)
Given G a Lie groupoid and $E=\bigoplus_{n=0}^{N} E_{n}$ a graded vector bundle, there is a 1-1 correspondence between ruth $R: G \curvearrowright E$ and higher vector bundles $q: V \rightarrow G$ with core E admitting a normal coherent cleavage.

Coordinate-free approach to RUTH
Heuristic: V is homotopy colimit of pseudo-functor $G \rightarrow G r($ Vect $)$

1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle $q: V \rightarrow G$ is a simplicial vector bundle over the nerve that is also a simplicial fibration.

Theorem (dH-Trentinaglia)
Given G a Lie groupoid and $E=\bigoplus_{n=0}^{N} E_{n}$ a graded vector bundle, there is a 1-1 correspondence between ruth $R: G \curvearrowright E$ and higher vector bundles $q: V \rightarrow G$ with core E admitting a normal coherent cleavage.

Coordinate-free approach to RUTH
Heuristic: V is homotopy colimit of pseudo-functor $G \rightarrow G r($ Vect $)$
Proof: • Builds on previous work of [Behrend, Getzler, Henriques, Zhu]

- uses new formulas for Dold-Kan;
- develops a theory of higher cleavages

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence
- Higher version of Grothendieck-GraciaSaz-Mehta correspondence

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence
- Higher version of Grothendieck-GraciaSaz-Mehta correspondence
- Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence
- Higher version of Grothendieck-GraciaSaz-Mehta correspondence
- Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

What can be useful for?

- Allow simple tensor products of RUTH [AriasAbad-Crainic-Dherin]

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence
- Higher version of Grothendieck-GraciaSaz-Mehta correspondence
- Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

What can be useful for?

- Allow simple tensor products of RUTH [AriasAbad-Crainic-Dherin]
- (cohomological) Morita invariance of RUTH [dH-Ortiz-Studzinski]

1.5 Relation with literature

How it fits into the literature

- Global version of Vaintrob's A-modules [Mehta]
- Relative version of classic Dold-Kan correspondence
- Higher version of Grothendieck-GraciaSaz-Mehta correspondence
- Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

What can be useful for?

- Allow simple tensor products of RUTH [AriasAbad-Crainic-Dherin]
- (cohomological) Morita invariance of RUTH [dH-Ortiz-Studzinski]
- (Possible) Solution to Block-Smith-Stasheff problem

2. Filling horns in geometry and algebra

- 2.1 Simplicial fibrations
- 2.2 Introducing higher cleavages
- 2.3 Coherent cleavages
- 2.4 The Dold-Kan correspondence
- 2.5 New formulas for the inverse

2.1 Simplicial Fibrations

A simplicial map between simplicial sets $q: \tilde{S} \rightarrow S$ is a fibration if the relative horn map $d_{n, k}^{q}: \tilde{S}_{n} \rightarrow \tilde{S}_{n, k} \times{ }_{S_{n, k}} S_{n}$ is surjective

The fibration $q: \tilde{S} \rightarrow S$ is \mathbf{N}-strict if $d_{n, k}^{q}$ bijective whenever $n>N$.

2.1 Simplicial Fibrations

A simplicial map between simplicial sets $q: \tilde{S} \rightarrow S$ is a fibration if the relative horn map $d_{n, k}^{q}: \tilde{S}_{n} \rightarrow \tilde{S}_{n, k} \times{ }_{S_{n, k}} S_{n}$ is surjective

The fibration $q: \tilde{S} \rightarrow S$ is \mathbf{N}-strict if $d_{n, k}^{q}$ bijective whenever $n>N$.
Example
a) A locally trivial submersion $q: \tilde{M} \rightarrow M$ induces a fibration between their singular smooth simplices $S^{\infty} q: S^{\infty} \tilde{M} \rightarrow S^{\infty} M$ (N-strict $=$ 1-strict $=$ discrete fiber)

2.1 Simplicial Fibrations

A simplicial map between simplicial sets $q: \tilde{S} \rightarrow S$ is a fibration if the relative horn map $d_{n, k}^{q}: \tilde{S}_{n} \rightarrow \tilde{S}_{n, k} \times{ }_{S_{n, k}} S_{n}$ is surjective

The fibration $q: \tilde{S} \rightarrow S$ is \mathbf{N}-strict if $d_{n, k}^{q}$ bijective whenever $n>N$.
Example
a) A locally trivial submersion $q: \tilde{M} \rightarrow M$ induces a fibration between their singular smooth simplices $S^{\infty} q: S^{\infty} \tilde{M} \rightarrow S^{\infty} M(N$-strict $=$ 1-strict $=$ discrete fiber)
b) A groupoid morphism $q: \tilde{G} \rightarrow G$ is a Grothendieck fibration iff $N q: N \tilde{G} \rightarrow N G$ is a fibration between nerves (1-strict)

2.2 Introducing higher cleavages

$q: \tilde{S} \rightarrow S$ a simplicial fibration. An n-cleavage $C_{n} \subset \tilde{S}_{n}$ is subset such that the relative horn maps $d_{n, k}^{q}: C_{n} \rightarrow \tilde{S}_{n, k} \times S_{n, k} S_{n}$ are bijections for all $k<n$. It is normal if C contains degenerate simplices. A cleavage is a collection $C=\left\{C_{n}: n \geq 1\right\}$.

2.2 Introducing higher cleavages

$q: \tilde{S} \rightarrow S$ a simplicial fibration. An n-cleavage $C_{n} \subset \tilde{S}_{n}$ is subset such that the relative horn maps $d_{n, k}^{q}: C_{n} \rightarrow \tilde{S}_{n, k} \times S_{n, k} S_{n}$ are bijections for all $k<n$. It is normal if C contains degenerate simplices. A cleavage is a collection $C=\left\{C_{n}: n \geq 1\right\}$.

Example
a) $q: \tilde{M} \rightarrow M$ locally trivial submersion, H complete Ehresmann connection, it yields an 1-cleavage C_{1} on $S^{\infty} q: S^{\infty} \tilde{M} \rightarrow S^{\infty} M$ by horizontal lifts. It is normal.

2.2 Introducing higher cleavages

$q: \tilde{S} \rightarrow S$ a simplicial fibration. An n-cleavage $C_{n} \subset \tilde{S}_{n}$ is subset such that the relative horn maps $d_{n, k}^{q}: C_{n} \rightarrow \tilde{S}_{n, k} \times S_{n, k} S_{n}$ are bijections for all $k<n$. It is normal if C contains degenerate simplices. A cleavage is a collection $C=\left\{C_{n}: n \geq 1\right\}$.

Example
a) $q: \tilde{M} \rightarrow M$ locally trivial submersion, H complete Ehresmann connection, it yields an 1-cleavage C_{1} on $S^{\infty} q: S^{\infty} \tilde{M} \rightarrow S^{\infty} M$ by horizontal lifts. It is normal.
b) $q: \tilde{G} \rightarrow G$ Grothendieck fibration. A cleavage $C=C_{1}$ for $N q$ recovers the notion of cleavage in Grothendieck's theory. Every fibration admits a normal cleavage.

2.2 Introducing higher cleavages

$q: \tilde{S} \rightarrow S$ a simplicial fibration. An n-cleavage $C_{n} \subset \tilde{S}_{n}$ is subset such that the relative horn maps $d_{n, k}^{q}: C_{n} \rightarrow \tilde{S}_{n, k} \times S_{n, k} S_{n}$ are bijections for all $k<n$. It is normal if C contains degenerate simplices. A cleavage is a collection $C=\left\{C_{n}: n \geq 1\right\}$.

Example
a) $q: \tilde{M} \rightarrow M$ locally trivial submersion, H complete Ehresmann connection, it yields an 1-cleavage C_{1} on $S^{\infty} q: S^{\infty} \tilde{M} \rightarrow S^{\infty} M$ by horizontal lifts. It is normal.
b) $q: \tilde{G} \rightarrow G$ Grothendieck fibration. A cleavage $C=C_{1}$ for $N q$ recovers the notion of cleavage in Grothendieck's theory. Every fibration admits a normal cleavage.

A Grothendieck fibration $q: \tilde{G} \rightarrow G$ splits by a cleavage C into a fiber pseudo-functor $F_{C}: G \rightarrow$ Gpds:

$$
F(x)=q^{-1}\left(\mathrm{id}_{x}\right) \quad F(g): F(x) \rightarrow F(y) \text { parallel transport }
$$

Higher cleavages allow us to develop a higher version

2.3 Push-forward operators

$q: \tilde{S} \rightarrow S$ simplicial fibration, C cleavage. Given $x \in \tilde{S}_{n}$ and $i<n$, its push-forward $p_{i}(x)=d_{i} h_{i}(x)$ results of pushing-forward the i-th vertex of x to the left:

$$
\left.\left.\begin{gathered}
\Delta[n] \xrightarrow{x} \tilde{S} \\
\delta_{i+1} \downarrow h_{i}(x),{ }^{1} \\
\Delta[n+1]_{\overline{u_{i+1} q x}}^{\prime}
\end{gathered}\right|_{q} \quad h_{i}(x)\right|_{\alpha} \in C \text { if }\{i, i+1\} \subset \alpha
$$

2.3 Push-forward operators

$q: \tilde{S} \rightarrow S$ simplicial fibration, C cleavage. Given $x \in \tilde{S}_{n}$ and $i<n$, its push-forward $p_{i}(x)=d_{i} h_{i}(x)$ results of pushing-forward the i-th vertex of x to the left:

$$
\begin{gathered}
\Delta[n] \xrightarrow{x} \tilde{S} \\
\left.\left.\left.\delta_{i+1} \downarrow{ }^{h_{i}(x),{ }^{\prime}}\right|_{q} ^{\prime}\right|_{q} \quad h_{i}(x)\right|_{\alpha} \in C \text { if }\{i, i+1\} \subset \alpha \\
\Delta[n+1] \underset{u_{i+1} q x}{ } \\
h_{i} \in C_{n+1}
\end{gathered}
$$

By iterated applications we can push-forward a simplex $x \in \tilde{S}_{n}$ to a new one $r(x) \in S_{n}$ over $t_{0} q(x)$

2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

$$
N: s A b \rightarrow C h_{\geq 0}(A b) \quad N X_{n}=\bigcap_{i>0} \operatorname{ker}\left(d_{i}: X_{n} \rightarrow X_{n-1}\right) \quad \partial=d_{0}
$$

Theorem
$N: s A b \rightarrow C h_{\geq 0}(A b)$ equivalence of categories.

2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

$$
N: s A b \rightarrow C h_{\geq 0}(A b) \quad N X_{n}=\bigcap_{i>0} \operatorname{ker}\left(d_{i}: X_{n} \rightarrow X_{n-1}\right) \quad \partial=d_{0}
$$

Theorem
$N: s A b \rightarrow C h_{\geq 0}(A b)$ equivalence of categories.

What is the inverse for N ?

$$
D K: C h_{\geq 0}(A b) \rightarrow s A b \quad D K(Y)_{n}=\operatorname{hom}(N F \Delta[n], Y)
$$

This is an instance of so-called Kan extensions.

2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

$$
N: s A b \rightarrow C h_{\geq 0}(A b) \quad N X_{n}=\bigcap_{i>0} \operatorname{ker}\left(d_{i}: X_{n} \rightarrow X_{n-1}\right) \quad \partial=d_{0}
$$

Theorem

$N: s A b \rightarrow C h_{\geq 0}(A b)$ equivalence of categories.

What is the inverse for N ?

$$
D K: C h_{\geq 0}(A b) \rightarrow s A b \quad D K(Y)_{n}=\operatorname{hom}(N F \Delta[n], Y)
$$

This is an instance of so-called Kan extensions.
Explicit formula for DK popularized in the literature (geometric meaning?)

2.5 New formulas for the inverse

Any simplex can be built by succesive horn-fillings from the 0 -vertex.

2.5 New formulas for the inverse

Any simplex can be built by succesive horn-fillings from the 0 -vertex.

This inspires the following:

Proposition [dH-T]

The inverse of normalization can be described as follows:

$$
\begin{gathered}
D K(Y)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\
\alpha(0)=0}} Y_{k} \quad \pi_{\beta} u_{j}=\pi_{v_{j} \beta} \quad \pi_{\beta} d_{i}=\pi_{\delta_{i} \beta}(i \neq 0) \\
\quad \pi_{\beta} d_{0}=\partial \pi_{\beta^{\prime}}-\sum_{0<i \leq 1+1}(-1)^{i} \pi_{\beta^{\prime} \delta_{i}}
\end{gathered}
$$

2.5 New formulas for the inverse

Any simplex can be built by succesive horn-fillings from the 0 -vertex.

This inspires the following:

Proposition [dH-T]

The inverse of normalization can be described as follows:

$$
\begin{gathered}
D K(Y)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\
\alpha(0)=0}} Y_{k} \quad \pi_{\beta} u_{j}=\pi_{v_{j} \beta} \quad \pi_{\beta} d_{i}=\pi_{\delta_{i} \beta}(i \neq 0) \\
\quad \pi_{\beta} d_{0}=\partial \pi_{\beta^{\prime}}-\sum_{0<i \leq 1+1}(-1)^{i} \pi_{\beta^{\prime} \delta_{i}}
\end{gathered}
$$

Advantages of our formula: geometric meaning, allow generalization
3. The semi-direct product construction

- 3.1 The simplex vector bundles
- 3.2 Faces and degeneracies
- 2.3 Splitting a higher vector bundle
- 2.4 Splitting via coherent cleavages
- 2.5 Moving forward

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

Example
Homogeneous vectors in $\left(G \ltimes_{R} E\right)_{2}$: possible α are $0,10,20$ and 210

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

Example

Homogeneous vectors in $\left(G \ltimes_{R} E\right)_{2}$: possible α are $0,10,20$ and 210

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \xrightarrow{\alpha}[n] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

Example
Homogeneous vectors in $\left(G \ltimes_{R} E\right)_{2}$: possible α are $0,10,20$ and 210

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

Example
Homogeneous vectors in $\left(G \ltimes_{R} E\right)_{2}$: possible α are $0,10,20$ and 210

3.1 The simplex vector bundles

Given $R: G \curvearrowright E$ a RUTH, the n-th simplex vector bundle is

$$
\left(G \ltimes_{R} E\right)_{n}=\bigoplus_{\substack{[k] \\ \alpha(0)=0}} x_{\alpha(k)}^{*} E_{k}
$$

Example
Homogeneous vectors in $\left(G \ltimes_{R} E\right)_{2}$: possible α are $0,10,20$ and 210

3.2 Faces and degeneracies

Positive faces and deg. are combinatorial: $\pi_{\beta} u_{j}=\pi_{v_{j} \beta}, \pi_{\beta} d_{i}=\pi_{\delta_{i} \beta}$ d_{0} encodes $R: \pi_{\beta} \circ d_{0}=\sum_{m+k=1+1} \pm R_{m}^{g \beta^{\prime} \tau_{m}} \pi_{\beta^{\prime} \sigma_{k}}-\sum_{0<i<1+1}(-1)^{i} \pi_{\beta^{\prime} \delta_{i}}$

3.2 Faces and degeneracies

Positive faces and deg. are combinatorial: $\pi_{\beta} u_{j}=\pi_{v_{j} \beta}, \pi_{\beta} d_{i}=\pi_{\delta_{i} \beta}$ d_{0} encodes R : $\pi_{\beta} \circ d_{0}=\sum_{m+k=I+1} \pm R_{m}^{g \beta^{\prime}} \tau_{m} \pi_{\beta^{\prime} \sigma_{k}}-\sum_{0<i<l+1}(-1)^{i} \pi_{\beta^{\prime} \delta_{i}}$

How the support changes with d_{0} :

$$
\pi_{\beta} d_{0}(e, \alpha, g)=(-1)^{i+1} e
$$

3.2 Faces and degeneracies

Positive faces and deg. are combinatorial: $\pi_{\beta} u_{j}=\pi_{v_{j} \beta}, \pi_{\beta} d_{i}=\pi_{\delta_{i} \beta}$ d_{0} encodes $R: \pi_{\beta} \circ d_{0}=\sum_{m+k=I+1} \pm R_{m}^{g \beta^{\prime} \tau_{m}} \pi_{\beta^{\prime} \sigma_{k}}-\sum_{0<i<I+1}(-1)^{i} \pi_{\beta^{\prime} \delta_{i}}$ How the support changes with d_{0} :

$$
\pi_{\beta} d_{0}(e, \alpha, g)= \pm R_{l+1-k}^{g \beta^{\prime} \tau_{l+1-k}}(e)
$$

$$
\begin{array}{ccc:c}
& \bullet \bullet: & \bullet & \stackrel{\beta}{ }^{\prime} \\
\hline n \quad \beta^{\prime}(I+1) & \alpha(k) & 10
\end{array}
$$

$$
\pi_{\beta} d_{0}(e, \alpha, g)=(-1)^{i+1} e
$$

Theorem (First half)

$\left(G \ltimes_{R} E, d_{i}, u_{j}\right)$ is a higher vector bundle over G with core E.
The sub-bundles $C_{n}=\left\{v: v_{\iota_{n}}=0\right\}$ form a normal coherent cleavage.

When $G=M$ this recovers new DK formula.
When $N=1$ this recovers Grothendieck-GraciaSaz-Mehta construction.

3.3 Splitting a higher vector bundle

Given $q: V \rightarrow G$ a higher vector bundle, writing $K_{n}=\operatorname{ker} d_{n, 0}^{q}: V_{n} \rightarrow d_{n, 0}^{*} V_{n, 0}$, and decomposing each simplex as succesive horn fillings from 0 -vertex, we get

$$
\phi_{n}: V_{n} \cong \bigoplus_{\substack{[k] \\ \alpha(0)=0}} a^{*} K_{k}
$$

3.3 Splitting a higher vector bundle

Given $q: V \rightarrow G$ a higher vector bundle, writing $K_{n}=\operatorname{ker} d_{n, 0}^{q}: V_{n} \rightarrow d_{n, 0}^{*} V_{n, 0}$, and decomposing each simplex as succesive horn fillings from 0 -vertex, we get

$$
\phi_{n}: V_{n} \cong \bigoplus_{\substack{\alpha, \alpha \\[k][n] \\ \alpha(0)=0}} a^{*} K_{k}
$$

This, combined with the push-forward operators induced by a normal cleavage C yields:
Direct sum decomposition
$q: V \rightarrow G$ higher vector bundle, C normal cleavage. There is an isomorphism $\phi_{n}: V_{n} \cong \bigoplus_{\substack{[k] \\ \alpha(0)=0}}{ }_{T n]} x_{\alpha(k)}^{*} E_{k}$ where $E_{k}=K_{k} \mid G_{0}$ core.

3.4 Splitting via coherent cleavages

The direct sum decomposition given by normal cleavage preserves the positive faces and the degeneracies (combinatorial)...
... but it may fail to preserve d_{0} !

3.4 Splitting via coherent cleavages

The direct sum decomposition given by normal cleavage preserves the positive faces and the degeneracies (combinatorial)...
... but it may fail to preserve d_{0} !

A cleavage C is coherent if the following holds true:

$$
w \in C_{n+1} \text { st } \begin{cases}d_{i}(w) \in C_{n} & 0<i \\ s_{k}(w) \in C_{k} & 0<k<n \quad \Rightarrow \quad d_{0}(w) \in C_{n} \\ s_{0}(w)=0 & \end{cases}
$$

3.4 Splitting via coherent cleavages

The direct sum decomposition given by normal cleavage preserves the positive faces and the degeneracies (combinatorial)...
... but it may fail to preserve d_{0} !

A cleavage C is coherent if the following holds true:

$$
w \in C_{n+1} \text { st } \begin{cases}d_{i}(w) \in C_{n} & 0<i \\ s_{k}(w) \in C_{k} & 0<k<n \quad \Rightarrow \quad d_{0}(w) \in C_{n} \\ s_{0}(w)=0 & \end{cases}
$$

Theorem (Second half)
$q: V \rightarrow G$ higher vector bundle, C normal coherent cleavage, then V is a semi-direct product of a representation up to homotopy.

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?
- Even if they not, can we set a derived equivalence?

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?
- Even if they not, can we set a derived equivalence?
- Are higher vector bundles Morita invariant?

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?
- Even if they not, can we set a derived equivalence?
- Are higher vector bundles Morita invariant?
- What about the level-wise tensor product of higher vector bundles?

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?
- Even if they not, can we set a derived equivalence?
- Are higher vector bundles Morita invariant?
- What about the level-wise tensor product of higher vector bundles?
- What is the underlying set-theoretic result?

3.5 Moving forward

- Do normal coherent cleavage exist for any higher vector bundle?
- Even if they not, can we set a derived equivalence?
- Are higher vector bundles Morita invariant?
- What about the level-wise tensor product of higher vector bundles?
- What is the underlying set-theoretic result?
- etc etc

Thanks!!

