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1.1 Lie groupoid representations

A representation R : G ~ E of a Lie groupoid G; == Gy over a vector
bundle E — Gg smoothly gives a linear isomorphism R : EX — EY for

each y <& x € G and satisfies R% = idgx and R"R8 = R"8

Example

Vector bundles, Lie group representations, equivariant and foliated vector
bundles, descent data

Proposition
To give a representation R : G ~ E is the same as:

a) A degree 1 differential on C(G, E) satisfying Leibniz and preserving
normalized cochains

b) A VB-groupoid with trivial core g : V — G such that Vo = E

c) A Lie groupoid morphism p: G — GL(E) into the general linear
groupoid

Representations are scarce! Lack of adjoint rep. no Tannaka duality, ...
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Given G Lie groupoid, an m-simplex g € G,, on its nerve is
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Let E = @nN:o E, — G be a graded vector bundle. A RUTH
R: G ~ E smoothly gives RE : EX&) — E%&) o c G, such that

n+m:

> R”(X) —idgs, x € Gy, and R4 — g, g€ Gp_1, m>1
> SRS = () R ORY ), g € Gy
Low degrees: e Ry chain differential on the fiber EX

e R chain map between fibers EX — EY
e R5»&' chain homotopy R{*&' = R$ R$
2 1 AT

Paradigmatic examples: Adjoint and co-adjoint representations of a Lie
groupoid (rule deformations, appear in Bott's spectral sequence)
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1.3 Equivalent approaches (problem)

DGAs
A RUTH is the same as a degree 1 differential on

CP(G,E) = D,,_p—, [(Gm; tg En) satisfying Leibniz and preserving
normalized cochains [AriasAbad-Crainic]

Fibrations

» N=1: A 2-term RUTH is the same as a VB-groupoid g: V — G
endowed with a cleavage [GraciaSaz-Mehta]

> General: Today's Talk [dH-T]

Classifying maps

» N=1: A 2-term RUTH is the same as a pseudo-functor
p: G --» GL(E; & E) into the general linear 2-groupoid
[dH-Stefani]

» General: yet to be done...
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1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle ¢: V — G is a
simplicial vector bundle over the nerve that is also a simplicial fibration.

Theorem (dH-Trentinaglia)

Given G a Lie groupoid and E = @HN:() E, a graded vector bundle, there
is a 1-1 correspondence between ruth R : G ~ E and higher vector
bundles q : V — G with core E admitting a normal coherent cleavage.

Coordinate-free approach to RUTH ‘

Heuristic: V' is homotopy colimit of pseudo-functor G --» Gr(Vect)

Proof: e Builds on previous work of [Behrend, Getzler, Henriques, Zhu]
e uses new formulas for Dold-Kan;
e develops a theory of higher cleavages
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1.5 Relation with literature

How it fits into the literature
» Global version of Vaintrob's A-modules [Mehta]

» Relative version of classic Dold-Kan correspondence
» Higher version of Grothendieck-GraciaSaz-Mehta correspondence

> Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

What can be useful for?
> Allow simple tensor products of RUTH [AriasAbad-Crainic-Dherin]

» (cohomological) Morita invariance of RUTH [dH-Ortiz-Studzinski]

» (Possible) Solution to Block-Smith-Stasheff problem



Working in categories more appropriate for algebraic geomety,
ck and Smith define a generalized Riemann—Hilbert
respondence which is an equivalence of categories

Flat(M) — hReps(Sing(M)),

2n by the generalized holonomy of a flat Z-graded connection.
re hReps denotes representations up to homotopy, although Block
1 Smith refer to them as infinity-local systems on M.

Block and Smith remark:
It would be an interesting problem in its own right to define
an inverse functor which makes use of a kind of associated
bundle construction.



2. Filling horns in geometry and algebra

» 2.1 Simplicial fibrations

» 2.2 Introducing higher cleavages
» 2.3 Coherent cleavages

» 2.4 The Dold-Kan correspondence

» 2.5 New formulas for the inverse



2.1 Simplicial Fibrations

A simplicial map between simplicial sets g : S — S is a fibration if the
relative horn map d;, : S, — S, x5, , Ss is surjective
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The fibration g : S — S is N-strict if dJ . bijective whenever n > N.

Example

a) A locally trivial submersion q : M— M induces a fibration between
their singular smooth simplices $>°q : S°M — S*°M (N-strict =
1-strict = discrete fiber)

b) A groupoid morphism q : G — G is a Grothendieck fibration iff
Ng : NG — NG is a fibration between nerves (1-strict)
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2.2 Introducing higher cleavages

q:5 — S a simplicial fibration. An n-cleavage C, C S, is subset such
that the relative horn maps dg,k 1 Ch— Snk X5,k S, are bijections for all
k < n. It is normal if C contains degenerate simplices. A cleavage is a
collection C = {C,: n>1}.

Example
a) g: M— M locally trivial submersion, H complete Ehresmann
connection, it yields an 1-cleavage C; on 5®qg: S®°M — S5°M by
horizontal lifts. It is normal.

b) g: G — G Grothendieck fibration. A cleavage C = C; for Ng
recovers the notion of cleavage in Grothendieck’s theory. Every
fibration admits a normal cleavage.

A Grothendieck fibration q : GG splits by a cleavage C into a fiber
pseudo-functor F¢ : G --» Gpds:

F(x) = g *(idy) F(g): F(x) — F(y) parallel transport

Higher cleavages allow us to develop a higher version



2.3 Push-forward operators

q: $55S simplicial fibration, C cleavage. Given x € 5,, and / < n, its
push-forward p;(x) = d;h;(x) results of pushing-forward the i-th vertex
of x to the left:
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2.3 Push-forward operators

q: $55S simplicial fibration, C cleavage. Given x € 5,, and / < n, its
push-forward p;(x) = d;h;(x) results of pushing-forward the i-th vertex
of x to the left:

Aln] —= ” S
Bit1 hi(X)/ g q hi G C,,+1
s hi(x)|e € Cif {i,i+1} Ca

7
Aln+1] e S

By iterated applications we can push-forward a simplex x € S, to a new
one r(x) € S, over toq(x)

[ ] (] (] (]
AN AN A A
[ ] ° — [ ] L] — [ ] ° — [ ] L]
BN Po A p1 . Po P
[ ] L] o [ ] [ ] o [ ] [ ] L] [ ] [ ] L]



2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

N :sAb— Chso(Ab)  NX,=(\ker(d;: X, = Xp—1) 0 =do
i>0

Theorem
N : sAb — Ch>o(Ab) equivalence of categories.
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2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

N :sAb— Chso(Ab)  NX,=(\ker(d;: X, = Xp—1) 0 =do
i>0

Theorem
N : sAb — Ch>o(Ab) equivalence of categories.

What is the inverse for N?
DK : Chso(Ab) — sAb DK(Y)n, = hom(NFA[n], Y)
This is an instance of so-called Kan extensions.

Explicit formula for DK popularized in the literature
(geometric meaning?)
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Any simplex can be built by succesive horn-fillings from the 0-vertex.
1 1 1 1
/ \\ / /
L/7 o % L/7 o /
2 0 2 0 2 0 2 0

This inspires the following:
Proposition [dH-T]
The inverse of normalization can be described as follows:

DK(Y)o= @ Y mpuj=myp mpdi=msp (i #0)

(k][]
«(0)=0

ngozaﬂﬂ/— Z (—l)iﬂ'ﬁrgi.

0<i</+1

Advantages of our formula: geometric meaning, allow generalization



3. The semi-direct product construction

» 3.1 The simplex vector bundles

» 3.2 Faces and degeneracies

» 2.3 Splitting a higher vector bundle
> 2.4 Splitting via coherent cleavages

» 2.5 Moving forward
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3.2 Faces and degeneracies

Positive faces and deg. are combinatorial: TRUj = Tup, mad; = o6
do encodes R: w5 0 dy = 32, 4—yi1 FRE a0, = Focicpa(—1) Tars,

How the support changes with dj:

o®

® 0

mpdo(e, o, g) = :N:R,gflﬂ“ “(e) mado(e, o, g) = (—1) e
¢ ©° e e : 28 . e " e e .
n B'(1+1) a(k) 10 n alk)  B'(i) 1

Theorem (First half)

(G xg E, d;, uj) is a higher vector bundle over G with core E.
The sub-bundles C, = {v : v,, = 0} form a normal coherent cleavage.

When G = M this recovers new DK formula.
When N =1 this recovers Grothendieck-GraciaSaz-Mehta construction.

o



3.3 Splitting a higher vector bundle

Given g : V — G a higher vector bundle, writing
K, = ker dq : Vo = d; o Vio, and decomposing each simplex as
succesive horn fillings from 0- vertex, we get
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3.3 Splitting a higher vector bundle

Given g : V — G a higher vector bundle, writing
K, = ker dq : Vo = d; o Vio, and decomposing each simplex as
succesive horn fillings from 0- vertex, we get

¢n: Vo = @ a* Ky

(k][]
«(0)=0

This, combined with the push-forward operators induced by a normal
cleavage C yields:

Direct sum decomposition

g : V — G higher vector bundle, C normal cleavage. There is an
isomorphism ¢, : V, & @[k]%[n] x;(k)Ek where Ex = Ki|g, core.
«(0)=0
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3.4 Splitting via coherent cleavages

The direct sum decomposition given by normal cleavage preserves the
positive faces and the degeneracies (combinatorial)...

... but it may fail to preserve dp!

A cleavage C is coherent if the following holds true:

dw)e G, 0<i
we Cuist {si(w)e e O0<k<n = dw)ed,
so(w) =0

Theorem (Second half)

q : V — G higher vector bundle, C normal coherent cleavage, then V is
a semi-direct product of a representation up to homotopy.
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3.5 Moving forward

» Do normal coherent cleavage exist for any higher vector bundle?

» Even if they not, can we set a derived equivalence?

» Are higher vector bundles Morita invariant?

» What about the level-wise tensor product of higher vector bundles?
» What is the underlying set-theoretic result?

> etc etc



Thanks!!
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