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1.1 Lie groupoid representations

A representation R : G y E of a Lie groupoid G1 ⇒ G0 over a vector
bundle E → G0 smoothly gives a linear isomorphism Rg : E x → E y for

each y
g←− x ∈ G1 and satisfies Rux = idE x and RhRg = Rhg

Example
Vector bundles, Lie group representations, equivariant and foliated vector
bundles, descent data

Proposition
To give a representation R : G y E is the same as:

a) A degree 1 differential on C (G ,E ) satisfying Leibniz and preserving
normalized cochains

b) A VB-groupoid with trivial core q : V → G such that V0 = E

c) A Lie groupoid morphism ρ : G → GL(E ) into the general linear
groupoid

Representations are scarce! Lack of adjoint rep. no Tannaka duality, ...
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1.2 Representations up to homotopy [AriasAbad-Crainic]

Given G Lie groupoid, an m-simplex g ∈ Gm on its nerve is

xm
gm←− xm−1

gm−1←−−− . . . gr+1←−−︸ ︷︷ ︸
tm−r (g)

xr
gr←− . . . g2←− x1

g1←− x0︸ ︷︷ ︸
sr (g)

Let E =
⊕N

n=0 En → G0 be a graded vector bundle. A RUTH

R : G y E smoothly gives Rg
m : E

s0(g)
n → E

t0(g)
n+m , g ∈ Gm, such that

I R
u(x)
1 = idE x , x ∈ G0, and R

uj (g)
m = 0, g ∈ Gm−1, m > 1

I
∑m−1

i=1 (−1)iR
di (g)
m−1 =

∑m
r=0(−1)rR

tm−r (g)
m−r R

sr (g)
r , g ∈ Gm

Low degrees: • Rx
0 chain differential on the fiber E x

• Rg
1 chain map between fibers E x → E y

• Rg2,g1
2 chain homotopy Rg2g1

1 ⇒ Rg2
1 Rg1

1

Paradigmatic examples: Adjoint and co-adjoint representations of a Lie
groupoid (rule deformations, appear in Bott’s spectral sequence)
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1.3 Equivalent approaches (problem)

DGAs
A RUTH is the same as a degree 1 differential on
C p(G ,E ) =

⊕
m−n=p Γ(Gm; t∗0En) satisfying Leibniz and preserving

normalized cochains [AriasAbad-Crainic]

Fibrations
I N=1: A 2-term RUTH is the same as a VB-groupoid q : V → G

endowed with a cleavage [GraciaSaz-Mehta]

I General: Today’s Talk [dH-T]

Classifying maps

I N=1: A 2-term RUTH is the same as a pseudo-functor
ρ : G 99K GL(E1 ⊕ E0) into the general linear 2-groupoid
[dH-Stefani]

I General: yet to be done...
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1.4 Our Main Theorem (solution)

Given G a Lie groupoid, a higher vector bundle q : V → G is a
simplicial vector bundle over the nerve that is also a simplicial fibration.

Theorem (dH-Trentinaglia)
Given G a Lie groupoid and E =

⊕N
n=0 En a graded vector bundle, there

is a 1-1 correspondence between ruth R : G y E and higher vector
bundles q : V → G with core E admitting a normal coherent cleavage.

Coordinate-free approach to RUTH

Heuristic: V is homotopy colimit of pseudo-functor G 99K Gr(Vect)

Proof: • Builds on previous work of [Behrend, Getzler, Henriques, Zhu]
• uses new formulas for Dold-Kan;
• develops a theory of higher cleavages
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1.5 Relation with literature

How it fits into the literature
I Global version of Vaintrob’s A-modules [Mehta]

I Relative version of classic Dold-Kan correspondence

I Higher version of Grothendieck-GraciaSaz-Mehta correspondence

I Lax version of [Heuts-Moerdijk, Lurie] higher Groth. corresp.

What can be useful for?
I Allow simple tensor products of RUTH [AriasAbad-Crainic-Dherin]

I (cohomological) Morita invariance of RUTH [dH-Ortiz-Studzinski]

I (Possible) Solution to Block-Smith-Stasheff problem
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2. Filling horns in geometry and algebra

I 2.1 Simplicial fibrations

I 2.2 Introducing higher cleavages

I 2.3 Coherent cleavages

I 2.4 The Dold-Kan correspondence

I 2.5 New formulas for the inverse



2.1 Simplicial Fibrations

A simplicial map between simplicial sets q : S̃ → S is a fibration if the
relative horn map dq

n,k : S̃n → S̃n,k ×Sn,k
Sn is surjective

Λn
k

∀ //

��

S̃

q

��
∆n

∃
??

∀ // S

The fibration q : S̃ → S is N-strict if dq
n,k bijective whenever n > N.

Example

a) A locally trivial submersion q : M̃ → M induces a fibration between
their singular smooth simplices S∞q : S∞M̃ → S∞M (N-strict =
1-strict = discrete fiber)

b) A groupoid morphism q : G̃ → G is a Grothendieck fibration iff
Nq : NG̃ → NG is a fibration between nerves (1-strict)
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2.2 Introducing higher cleavages
q : S̃ → S a simplicial fibration. An n-cleavage Cn ⊂ S̃n is subset such
that the relative horn maps dq

n,k : Cn → S̃n,k ×Sn,k
Sn are bijections for all

k < n. It is normal if C contains degenerate simplices. A cleavage is a
collection C = {Cn : n ≥ 1}.

Example

a) q : M̃ → M locally trivial submersion, H complete Ehresmann
connection, it yields an 1-cleavage C1 on S∞q : S∞M̃ → S∞M by
horizontal lifts. It is normal.

b) q : G̃ → G Grothendieck fibration. A cleavage C = C1 for Nq
recovers the notion of cleavage in Grothendieck’s theory. Every
fibration admits a normal cleavage.

A Grothendieck fibration q : G̃ → G splits by a cleavage C into a fiber
pseudo-functor FC : G 99K Gpds:

F (x) = q−1(idx) F (g) : F (x)→ F (y) parallel transport

Higher cleavages allow us to develop a higher version
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2.3 Push-forward operators
q : S̃ → S simplicial fibration, C cleavage. Given x ∈ S̃n and i < n, its
push-forward pi (x) = dihi (x) results of pushing-forward the i-th vertex
of x to the left:

∆[n]
x //

δi+1

��

S̃

q

��
∆[n + 1]

hi (x)

<<

ui+1qx
// S

hi ∈ Cn+1

hi (x)|α ∈ C if {i , i + 1} ⊂ α

n

i

0

By iterated applications we can push-forward a simplex x ∈ S̃n to a new
one r(x) ∈ Sn over t0q(x)

•

• •
``

• • •
`` 7→

p0

•

• •
``

• •
OO

•

7→
p1

•

•
OO

•

• •
``

•

7→
p0

•

•
OO

•

•
OO

• •
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2.4 The Dold-Kan correspondence

The normalization of a simplicial abelian group is a chain complex:

N : sAb → Ch≥0(Ab) NXn =
⋂
i>0

ker(di : Xn → Xn−1) ∂ = d0

Theorem
N : sAb → Ch≥0(Ab) equivalence of categories.

What is the inverse for N?

DK : Ch≥0(Ab)→ sAb DK (Y )n = hom(NF∆[n],Y )

This is an instance of so-called Kan extensions.

Explicit formula for DK popularized in the literature
(geometric meaning?)
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2.5 New formulas for the inverse
Any simplex can be built by succesive horn-fillings from the 0-vertex.

0

1

2 0

1

2 0

1

2 0

1

2

This inspires the following:

Proposition [dH-T]
The inverse of normalization can be described as follows:

DK (Y )n =
⊕

[k]
α−→[n]

α(0)=0

Yk πβuj = πυjβ πβdi = πδiβ (i 6= 0)

πβd0 = ∂πβ′ −
∑

0<i≤l+1

(−1)iπβ′δi .

Advantages of our formula: geometric meaning, allow generalization
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3. The semi-direct product construction

I 3.1 The simplex vector bundles

I 3.2 Faces and degeneracies

I 2.3 Splitting a higher vector bundle

I 2.4 Splitting via coherent cleavages

I 2.5 Moving forward



3.1 The simplex vector bundles
Given R : G y E a RUTH, the n-th simplex vector bundle is

(G nR E )n =
⊕

[k]
α−→[n]

α(0)=0

x∗α(k)Ek

Example
Homogeneous vectors in (G nR E )2: possible α are 0, 10, 20 and 210

(e, g , 0)
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(e, g , 10)
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0

(e, g , 20)
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0

(e, g , 210)
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3.2 Faces and degeneracies

Positive faces and deg. are combinatorial: πβuj = πυjβ , πβdi = πδiβ
d0 encodes R: πβ ◦ d0 =

∑
m+k=l+1±Rgβ′τm

m πβ′σk
−
∑

0<i<l+1(−1)iπβ′δi

How the support changes with d0:

πβd0(e, α, g) = ±Rgβ′τl+1−k

l+1−k (e) πβd0(e, α, g) = (−1)i+1e

0n
α

1

β′

α(k)β′(l + 1) 0n
α
β′

1β′(i)α(k)

Theorem (First half)
(G nR E , di , uj) is a higher vector bundle over G with core E .
The sub-bundles Cn = {v : vιn = 0} form a normal coherent cleavage.

When G = M this recovers new DK formula.
When N = 1 this recovers Grothendieck-GraciaSaz-Mehta construction.
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3.3 Splitting a higher vector bundle

Given q : V → G a higher vector bundle, writing
Kn = ker dq

n,0 : Vn → d∗n,0Vn,0, and decomposing each simplex as
succesive horn fillings from 0-vertex, we get

φn : Vn
∼=

⊕
[k]

α−→[n]
α(0)=0

a∗Kk

This, combined with the push-forward operators induced by a normal
cleavage C yields:

Direct sum decomposition
q : V → G higher vector bundle, C normal cleavage. There is an
isomorphism φn : Vn

∼=
⊕

[k]
α−→[n]

α(0)=0

x∗α(k)Ek where Ek = Kk |G0 core.
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3.4 Splitting via coherent cleavages
The direct sum decomposition given by normal cleavage preserves the
positive faces and the degeneracies (combinatorial)...

... but it may fail to preserve d0!

2
1

0

2′

A cleavage C is coherent if the following holds true:

w ∈ Cn+1 st


di (w) ∈ Cn 0 < i

sk(w) ∈ Ck 0 < k < n

s0(w) = 0

⇒ d0(w) ∈ Cn

Theorem (Second half)
q : V → G higher vector bundle, C normal coherent cleavage, then V is
a semi-direct product of a representation up to homotopy.
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3.5 Moving forward

I Do normal coherent cleavage exist for any higher vector bundle?

I Even if they not, can we set a derived equivalence?

I Are higher vector bundles Morita invariant?

I What about the level-wise tensor product of higher vector bundles?

I What is the underlying set-theoretic result?

I etc etc
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Thanks!!
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