Local structure of Lagrangians and shifted Poisson geometry

Pavel Safronov

University of Edinburgh

March 2023

Suppose X is a smooth (C^{∞}) symplectic manifold and $L \subset X$ a smooth Lagrangian submanifold.

Theorem (Lagrangian neighborhood theorem)

There is a neighborhood of $L \subset X$ which is symplectomorphic to a neighborhood of the zero section $L \subset T^*L$.

Totally false when working with holomorphic or algebraic symplectic structures. Does not work with formal or even first-order neighborhoods!

Example

Consider an elliptic fibration $f: S \to \mathbf{P}^1$ of a K3 surface. The surface S has a holomorphic symplectic structure and the fibers of f are Lagrangian. The generic fiber of f has no first-order splitting.

Let $L \subset X$ be a Lagrangian submanifold. Then we have an exact sequence

$$0 \longrightarrow \mathrm{T}_L \longrightarrow \mathrm{T}_X|_L \longrightarrow \mathrm{N}_L \cong \mathrm{T}_L^* \longrightarrow 0$$

which defines an extension class $\alpha \in H^1(L, \operatorname{Sym}^2 T_L)$.

Where to go from here:

- If X is hyperKähler, from α one can extract a cubic form on H⁰(L, T^{*}_L). This defines a special Kähler structure on the moduli space of holomorphic Lagrangians in X (Hitchin).
- α is a bivector underlying a (-1)-shifted Poisson structure.

In the context of derived algebraic geometry Pantev–Toën–Vaquié–Vezzosi introduced *n*-shifted symplectic structures: elements

$$\omega_2 \in \mathrm{H}^n(X, \wedge^2 \mathrm{T}^*_X)$$

satisfying

- Nondegeneracy condition: $\omega_2 \colon T_X \to T_X^*[n]$ is an isomorphism.
- \bullet Closure: $\mathrm{d}\omega_2=0$ holds up to coherent homotopy. Explicitly: there are forms ω_3,ω_4,\ldots such that

$$\mathrm{d}\omega_2 \stackrel{\omega_3}{\sim} \mathbf{0}, \qquad \mathrm{d}\omega_3 \stackrel{\omega_4}{\sim} \mathbf{0}, \qquad \dots$$

Calaque-Pantev-Toën-Vaquié-Vezzosi introduced *n*-shifted Poisson structures: elements $\pi_2 \in \mathrm{H}^{-n}(X, \wedge^2 \mathrm{T}_X)$ (for *n* even) or $\pi_2 \in \mathrm{H}^{-n}(X, \mathrm{Sym}^2 \mathrm{T}_X)$ (for *n* odd) such that

$$[\pi_2,\pi_2]=0$$

holds up to coherent homotopy. Explicitly: there are polyvectors π_3, π_4, \ldots such that

$$[\pi_2, \pi_2] \stackrel{\pi_3}{\sim} 0, \qquad [\pi_2, \pi_3] \stackrel{\pi_4}{\sim} 0, \qquad \dots$$

The homotopies are interesting. E.g. if $\pi_2 = 0$, then $\pi_3 \in H^{-2n-1}(X, \wedge^3 T_X)$.

Theorem (CPTVV, Pridham)

The inverse of an n-shifted symplectic structure ω defines an n-shifted Poisson structure $\pi.$

Given a map $f: L \to X$, where X has an *n*-shifted symplectic structure, one can define a **Lagrangian structure**: nullhomotopy $f^*\omega = 0$ such that the induced map $N_L \to T_L^*[n]$ is an isomorphism.

Theorem (Melani-S)

Suppose $f: L \to X$ has an n-shifted Lagrangian structure. Then there is a natural (n-1)-shifted Poisson structure on L.

Idea: just like one can invert *n*-shifted symplectic structures to get *n*-shifted Poisson structures, one can invert *n*-shifted Lagrangian structures to get *n*-shifted coisotropic structures. In particular, they consist of an *n*-shifted Poisson structure on X and an (n-1)-shifted Poisson structure on L.

Example (revisited). Let $L \subset X$ be an ordinary Lagrangian submanifold, so that n = 0. Then L carries a (-1)-shifted Poisson structure.

Recall: $\mathfrak{G} \rightrightarrows X$ is a symplectic groupoid if:

- There is a multiplicative symplectic structure ω on §.
- The unit section $X \to \mathcal{G}$ is Lagrangian. In particular, the Lie algebroid of \mathcal{G} is T_X^* .

The anchor map

$$\rho\colon \mathrm{T}_X^* \longrightarrow \mathrm{T}_X$$

endows X with a Poisson structure $\pi,$ so that ${\mathcal G}$ is an integration of the Poisson structure.

Theorem (S)

There is a 1-shifted Lagrangian structure on the quotient map $X \to [X/\Im]$ determined by the symplectic structure ω on \Im . The underlying 0-shifted Poisson structure on X is π . Let X be a complex manifold.

• Atiyah: the obstruction class for holomorphic (torsion-free) connections on T_X is

$$\operatorname{at}_X \in \operatorname{H}^1(X, \operatorname{T}_X \otimes \operatorname{Sym}^2(\operatorname{T}_X^*)).$$

• Kapranov: this is a Lie bracket underlying an L_{∞} structure on $T_X[-1]$ in DCoh(X). Namely, $\wedge^2(T_X[-1]) \rightarrow T_X[-1]$ is the same as map $Sym^2(T_X) \rightarrow T_X[1]$.

Suppose further that X is holomorphic symplectic. Then:

- $\operatorname{at}_X \in \operatorname{H}^1(X, \operatorname{Sym}^3(\operatorname{T}_X)).$
- There is an IHX relation $\{at_X, at_X\} = 0 \in H^2(X, Sym^4(T_X)).$

Looks like a part of a (-1)-shifted Poisson structure!

If \mathfrak{g} is an L_{∞} algebra equipped with a nondegenerate pairing (cyclic structure), then $\mathrm{C}^{\bullet}(\mathfrak{g}) = \widehat{\mathsf{Sym}}(\mathfrak{g}^*[-1])$ has a Poisson structure and the CE differential d is given by $\mathrm{d} = \{\Phi, -\}$ for a **potential**

$$\Phi \in \widehat{\mathsf{Sym}}^{\geq 3}(\mathfrak{g}^*[-1]).$$

Proposition

If X is symplectic, the Lie algebra $T_X[-1]$ is cyclic. The potential for this cyclic L_{∞} structure is the (-1)-shifted Poisson structure underlying the diagonal Lagrangian $\Delta \colon X \to X \times \overline{X}$.

The cubic term in Φ determines the bracket, so $\operatorname{at}_X \in \operatorname{H}^1(X, \operatorname{Sym}^3(\operatorname{T}_X))$ is the trivector of the (-1)-shifted Poisson structure.

Let G be a Poisson-Lie group. Often it comes as a part of a Manin triple:

- D is a Lie group with a nondegenerate pairing on Lie(D).
- $G \subset D$ is a Lagrangian subgroup.
- $G^* \subset D$ is a transverse Lagrangian subgroup, the Poisson-Lie dual.

To first order near $e \in G^*$ the Poisson structure looks like the Kirillov–Kostant–Souriau Poisson structure near $0 \in \mathfrak{g}^*$.

Question: is there a Poisson isomorphism of (formal) neighborhoods?

There is a natural 1-shifted symplectic structure on the quotient stack $[G \setminus D/G]$ and a Lagrangian structure on the inclusion of the unit $[pt/G] \rightarrow [G \setminus D/G]$.

Proposition (S)

The Poisson-Lie group G^* is formally linearizable if, and only if, the 0-shifted Poisson structure on [pt/G] coming from the 1-shifted Lagrangian $[pt/G] \rightarrow [G \setminus D/G]$ is zero.

Let X be a smooth algebraic variety and $W: X \rightarrow C$ an algebraic function. MF(X, W) is the 2-periodic dg category of *matrix factorizations*: diagrams

$$V_1 \xrightarrow[d]{d} V_0$$

of coherent sheaves such that $d^2 = W \cdot id$.

Suppose the critical locus $Y \subset X$ of W is smooth. Then N_Y has a quadratic form given by the Hessian of W. It has the Stiefel–Whitney classes

$$w_1 \in \mathrm{H}^1(Y; \mathbf{Z}/2), w_2 \in \mathrm{H}^2(Y; \mathbf{Z}/2)$$

and we can consider the twisted derived category ${\rm DCoh}^{w_1,w_2}(Y)_{Z/2}$ of 2-periodic coherent complexes.

The following was conjectured by Kapustin–Rozansky–Saulina (modulo the correction).

Theorem (Teleman)

There is a Maurer–Cartan element $\pi \in \Omega^{0,\bullet}(Y, \wedge^{\bullet}T_Y)$, so that MF(X, W) is equivalent to the deformation of $DCoh^{w_1,w_2}(Y)_{Z/2}$ along π .

Given the function $W: X \to \mathbf{C}$ we can consider the following objects:

- Its critical locus $Y = Crit(W) \subset X$. This is a (possibly singular) subscheme of X.
- The derived critical locus dCrit(W). It is a derived scheme which has a (-1)-shifted symplectic structure.
- There is a natural map $\operatorname{Crit}(W) \to \operatorname{dCrit}(W)$.

Proposition

Suppose $\operatorname{Crit}(W)$ is smooth. Then $\operatorname{Crit}(W) \to \operatorname{dCrit}(W)$ has a unique Lagrangian structure with π the underlying (-2)-shifted Poisson structure on $\operatorname{Crit}(W)$.

This fits into the following program:

- For any (-1)-shifted symplectic scheme Z equipped with a spin structure there is a 2-periodic dg category MF_Z .
- $MF_{dCrit(W)} = MF(X, W)$ and so $MF_{T^*[-1]Y} = DCoh(Y)_{Z/2}$.

The above proposition describes dCrit(W) as a twist of $T^*[-1]Y$ along π .