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Introduction

Suppose X is a smooth (C∞) symplectic manifold and L ⊂ X a smooth Lagrangian
submanifold.

Theorem (Lagrangian neighborhood theorem)

There is a neighborhood of L ⊂ X which is symplectomorphic to a neighborhood of
the zero section L ⊂ T∗L.

Totally false when working with holomorphic or algebraic symplectic structures. Does
not work with formal or even first-order neighborhoods!

Example

Consider an elliptic fibration f : S → P1 of a K3 surface. The surface S has a
holomorphic symplectic structure and the fibers of f are Lagrangian. The generic fiber
of f has no first-order splitting.
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Holomorphic Lagrangian splittings

Let L ⊂ X be a Lagrangian submanifold. Then we have an exact sequence

0 −→ TL −→ TX |L −→ NL
∼= T∗L −→ 0

which defines an extension class α ∈ H1(L, Sym2 TL).

Where to go from here:

If X is hyperKähler, from α one can extract a cubic form on H0(L,T∗L). This
defines a special Kähler structure on the moduli space of holomorphic
Lagrangians in X (Hitchin).

α is a bivector underlying a (−1)-shifted Poisson structure.
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Shifted symplectic structures

In the context of derived algebraic geometry Pantev–Toën–Vaquié–Vezzosi introduced
n-shifted symplectic structures: elements

ω2 ∈ Hn(X ,∧2T∗X )

satisfying

Nondegeneracy condition: ω2 : TX → T∗X [n] is an isomorphism.

Closure: dω2 = 0 holds up to coherent homotopy. Explicitly: there are forms
ω3, ω4, . . . such that

dω2
ω3∼ 0, dω3

ω4∼ 0, . . .

Calaque–Pantev–Toën–Vaquié–Vezzosi introduced n-shifted Poisson structures:
elements π2 ∈ H−n(X ,∧2TX ) (for n even) or π2 ∈ H−n(X , Sym2 TX ) (for n odd)
such that

[π2, π2] = 0

holds up to coherent homotopy. Explicitly: there are polyvectors π3, π4, . . . such that

[π2, π2]
π3∼ 0, [π2, π3]

π4∼ 0, . . .

The homotopies are interesting. E.g. if π2 = 0, then π3 ∈ H−2n−1(X ,∧3TX ).
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Shifted Lagrangian structures

Theorem (CPTVV, Pridham)

The inverse of an n-shifted symplectic structure ω defines an n-shifted Poisson
structure π.

Given a map f : L→ X , where X has an n-shifted symplectic structure, one can define
a Lagrangian structure: nullhomotopy f ∗ω = 0 such that the induced map
NL → T∗L [n] is an isomorphism.

Theorem (Melani–S)

Suppose f : L→ X has an n-shifted Lagrangian structure. Then there is a natural
(n − 1)-shifted Poisson structure on L.

Idea: just like one can invert n-shifted symplectic structures to get n-shifted Poisson
structures, one can invert n-shifted Lagrangian structures to get n-shifted coisotropic
structures. In particular, they consist of an n-shifted Poisson structure on X and an
(n − 1)-shifted Poisson structure on L.

Example (revisited). Let L ⊂ X be an ordinary Lagrangian submanifold, so that
n = 0. Then L carries a (−1)-shifted Poisson structure.
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Symplectic groupoids

Recall: G ⇒ X is a symplectic groupoid if:

There is a multiplicative symplectic structure ω on G.

The unit section X → G is Lagrangian. In particular, the Lie algebroid of G is T∗X .

The anchor map
ρ : T∗X −→ TX

endows X with a Poisson structure π, so that G is an integration of the Poisson
structure.

Theorem (S)

There is a 1-shifted Lagrangian structure on the quotient map X → [X/G] determined
by the symplectic structure ω on G. The underlying 0-shifted Poisson structure on X
is π.
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L∞ structure on TX [−1]

Let X be a complex manifold.

Atiyah: the obstruction class for holomorphic (torsion-free) connections on TX is

atX ∈ H1(X ,TX ⊗ Sym2(T∗X )).

Kapranov: this is a Lie bracket underlying an L∞ structure on TX [−1] in
DCoh(X ). Namely, ∧2(TX [−1])→ TX [−1] is the same as map
Sym2(TX )→ TX [1].

Suppose further that X is holomorphic symplectic. Then:

atX ∈ H1(X ,Sym3(TX )).

There is an IHX relation {atX , atX } = 0 ∈ H2(X ,Sym4(TX )).

Looks like a part of a (−1)-shifted Poisson structure!
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L∞ structure on TX [−1]

If g is an L∞ algebra equipped with a nondegenerate pairing (cyclic structure), then

C•(g) = Ŝym(g∗[−1]) has a Poisson structure and the CE differential d is given by
d = {Φ,−} for a potential

Φ ∈ Ŝym
≥3

(g∗[−1]).

Proposition

If X is symplectic, the Lie algebra TX [−1] is cyclic. The potential for this cyclic L∞
structure is the (−1)-shifted Poisson structure underlying the diagonal Lagrangian
∆: X → X × X .

The cubic term in Φ determines the bracket, so atX ∈ H1(X , Sym3(TX )) is the
trivector of the (−1)-shifted Poisson structure.

8 / 11 Pavel Safronov Local structure of Lagrangians and shifted Poisson geometry



Linearization of Poisson-Lie groups

Let G be a Poisson-Lie group. Often it comes as a part of a Manin triple:

D is a Lie group with a nondegenerate pairing on Lie(D).

G ⊂ D is a Lagrangian subgroup.

G∗ ⊂ D is a transverse Lagrangian subgroup, the Poisson-Lie dual.

To first order near e ∈ G∗ the Poisson structure looks like the
Kirillov–Kostant–Souriau Poisson structure near 0 ∈ g∗.

Question: is there a Poisson isomorphism of (formal) neighborhoods?

There is a natural 1-shifted symplectic structure on the quotient stack [G\D/G ] and a
Lagrangian structure on the inclusion of the unit [pt/G ]→ [G\D/G ].

Proposition (S)

The Poisson-Lie group G∗ is formally linearizable if, and only if, the 0-shifted Poisson
structure on [pt/G ] coming from the 1-shifted Lagrangian [pt/G ]→ [G\D/G ] is zero.
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Morse–Bott matrix factorizations

Let X be a smooth algebraic variety and W : X → C an algebraic function.
MF(X ,W ) is the 2-periodic dg category of matrix factorizations: diagrams

V1

d // V0
d

oo

of coherent sheaves such that d2 = W · id.

Suppose the critical locus Y ⊂ X of W is smooth. Then NY has a quadratic form
given by the Hessian of W . It has the Stiefel–Whitney classes

w1 ∈ H1(Y ;Z/2),w2 ∈ H2(Y ;Z/2)

and we can consider the twisted derived category DCohw1,w2 (Y )Z/2 of 2-periodic
coherent complexes.

The following was conjectured by Kapustin–Rozansky–Saulina (modulo the
correction).

Theorem (Teleman)

There is a Maurer–Cartan element π ∈ Ω0,•(Y ,∧•TY ), so that MF(X ,W ) is
equivalent to the deformation of DCohw1,w2 (Y )Z/2 along π.
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Morse–Bott matrix factorizations

Given the function W : X → C we can consider the following objects:

Its critical locus Y = Crit(W ) ⊂ X . This is a (possibly singular) subscheme of X .

The derived critical locus dCrit(W ). It is a derived scheme which has a
(−1)-shifted symplectic structure.

There is a natural map Crit(W )→ dCrit(W ).

Proposition

Suppose Crit(W ) is smooth. Then Crit(W )→ dCrit(W ) has a unique Lagrangian
structure with π the underlying (−2)-shifted Poisson structure on Crit(W ).

This fits into the following program:

For any (−1)-shifted symplectic scheme Z equipped with a spin structure there is
a 2-periodic dg category MFZ .

MFdCrit(W ) = MF(X ,W ) and so MFT∗[−1]Y = DCoh(Y )Z/2.

The above proposition describes dCrit(W ) as a twist of T∗[−1]Y along π.
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