NAME:

You must show all work, calculations, formulas used to receive any credit.
NO WORK = NO CREDIT.

Round the final answers to 3 decimal places.

Good luck!

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Question 7

Question 8

Total out of 100.
1. **General Question.** Several scenarios are listed below on the left. A number of statistical procedures, distribution, and measures that we’ve covered are listed on the right. For each scenario, list the statistical method you should use. Not all of the procedures listed will be used.

- You wish to test a hypothesis about a mean using a small sample size. What procedure should you use?

- You’d like to look for outliers in your data. The distribution is skewed, though, so you’ve opted to use the five number summary. What procedure will help you identify possible outliers?

- Which measure can be used to find the relative standing of two observations from different distributions of data?

- You are taking a sample of 50 people and measuring their average height. Suppose the individual heights have a mean of 56 inches and a standard deviation of 5 inches. What distribution would help you find the probability that the average is greater than 70 inches tall?

- A health professional selected a random sample of 100 patients from each of four major hospital emergency rooms to see if the major reasons for emergency room visits are similar in all four major hospitals. The major reason categories are accident, illegal activity, illness, and other.

- A study wanted to examine the relationship between number of Japanese beetle grubs and percentage of organic matter in the soil for locations on a golf course in New York.

- Bar Graph
 - Pie Chart
 - Mean and Standard deviation
 - Five Number Summary
 - 1.5 IQR rule
 - Z-score
 - Histogram
 - Stem-and-leaf Plot
 - Boxplot
 - Binomial Distribution
 - Normal Distribution
 - Uniform Distribution
 - One-sample t-Interval for a mean
 - Two-sample t-Interval for a mean
 - One-sample z-Interval for a proportion
 - Two-sample z-Interval for a proportion
 - Matched pairs t-Test
 - One-sample t-Test for a mean
 - Two-sample t-Test for a mean
 - One-sample z-Test for a proportion
 - Two-sample z-Test for a proportion
 - ANOVA
 - Linear regression
 - Chi-squared goodness of fit
 - Chi-squared test for homogeneity
 - Chi-squared test for independence
• A study compared the toxicity on flies of four different types of selenium. The number of dead flies was counted and the selenium type (type 1, 2, 3, or 4) was recorded for each observation. The researchers want to know if the toxicities differ between selenium types

• You have a quantitative variable, and want to visually picture the data in such a way that the original data values are preserved. What graph will do this?

• You’d like to find the mean income of all Amherst residents, using a sample of 35 people. What procedure should you used to produce a 95% confidence interval?

• You’d like to see if there is a difference in the mean incoming SAT score of incoming freshmen among all of the five colleges
2. A biologist studying lizards, specifically Cophosaurus texanus, recorded the weight (mass) in grams, snout-vent length (SVL) and hind limb span (HLS) of a random sample of 25 such lizards. The biologist wants to study the relationship between variables, looking to see if SVL can be used to predict weight (mass) accurately. A basic scatterplot shows the data at right.

a. Based on the scatterplot, how would you describe the relationship between SVL and mass?

A student working in the biologist’s lab runs a regression analysis on the data and produces the following partial Rcmdr output:

Coefficients:

| Estimate | Std. Error | t value | Pr(> |t|) |
|----------|------------|---------|-------|
| (Intercept) | -13.51551 | 1.22931 | -10.99 | 1.24e-10 *** |
| SVL | 0.32459 | 0.01786 | 18.18 | 3.84e-15 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6986 on 23 degrees of freedom
Multiple R-squared: 0.9349, Adjusted R-squared: 0.9321
F-statistic: 330.5 on 1 and 23 DF, p-value: 3.836e-15

b. What is the value of the sample correlation coefficient? Interpret the correlation coefficient.

c. Interpret the R-squared value. How well you think this model fits the data?
d. What is the equation of the least squares regression line

e. Check the assumptions.

f. Now, we want to assess whether or not SVL can be used to predict mass (weight). What hypotheses correspond to determining if SVL is a significant predictor

Null hypothesis:

Alternative Hypothesis:

Test Statistic:

Distribution of Test Stat:

p-value:

Conclusion:

g. Obtain a 95% confidence interval for the population slope. (You do not need to list assumptions.)
Interpret your interval

Can you conclude the population slope is less than 1? Explain.

h. Obtain predictions for mass based on SVLs of 64 and 98, if appropriate. If inappropriate, explain why.

i. Compute a 95% prediction interval for an individual response when SLVs=64. Interpret your interval. Assume the mean value of SLV is 70.

j. Compute a 95% confidence Interval for the mean response when SLVs=64. Interpret your interval
k. Which of the following aspects of the scatterplot affect the standard error of the regression slope?
 A. spread around the line: \(s_e \)
 B. spread of the \(x \) values: \(s_x \)
 C. sample size: \(n \)
 D. all of the above

3. Researchers in 3 different cities decided to compare average pH of rainwater from their cities based on data collected over the past 6 months. Each researcher obtained a random sample of pHs for their city. Help the researchers determine whether their cities have the same or different average pH levels for rain. Preliminary analysis and formal analysis output is given below from Rcmdr. Note: pH = 7 is neutral. Values below 7 are acidic, and normal rainwater has a pH of 5.3, while acid rain is even lower.

Preliminary analysis:

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>city1</td>
<td>5.164</td>
<td>0.195</td>
<td>4.68</td>
<td>5.06</td>
<td>5.14</td>
<td>5.28</td>
<td>5.75</td>
<td>40</td>
</tr>
<tr>
<td>city2</td>
<td>4.980</td>
<td>0.137</td>
<td>4.71</td>
<td>4.89</td>
<td>4.95</td>
<td>5.06</td>
<td>5.29</td>
<td>40</td>
</tr>
<tr>
<td>city3</td>
<td>5.100</td>
<td>0.103</td>
<td>4.90</td>
<td>5.03</td>
<td>5.09</td>
<td>5.16</td>
<td>5.32</td>
<td>40</td>
</tr>
</tbody>
</table>

a) What does the preliminary analysis reveal to you?
b. What assumptions need to be met? Do they appear to check out?

c. (Circle one) This ANOVA is balanced unbalanced

d. Determine the missing values for the degrees of freedom and the test statistic. Use the output to complete the test you set up hypotheses for, assuming all conditions check out.

Type df= F value=
Residuals df=

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>0.69803</td>
<td>0.34901</td>
<td>? 1.029e-06 ***</td>
<td></td>
</tr>
<tr>
<td>Residuals</td>
<td>2.62656</td>
<td>0.02245</td>
<td>1.029e-06 ***</td>
<td></td>
</tr>
</tbody>
</table>

Null hypothesis: Alternative Hypothesis : Test Statistic:

Distribution of Test Stat:

p-value :
Conclusion:

e. What is your best estimate of the common population variance?

f. Are multiple comparisons appropriate? Explain. If yes, summarize the results.

95% family-wise confidence level
Linear Hypotheses:

<table>
<thead>
<tr>
<th>Linear Hypothesis</th>
<th>Estimate lwr</th>
<th>upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>city2 - city1 == 0</td>
<td>-0.18400 -0.26353 -0.10447</td>
<td></td>
</tr>
<tr>
<td>city3 - city1 == 0</td>
<td>-0.06400 -0.14353 0.01553</td>
<td></td>
</tr>
<tr>
<td>city3 - city2 == 0</td>
<td>0.12000 0.04047 0.19953</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Comparisons (if appropriate):

Compute a 95% confidence interval for City1 – City 2 (by hand)
4. A study on crew teams analyzed the weights of randomly selected rowers from the Oxford and Cambridge crew teams. From data collected over past years, 8 Oxford and 8 Cambridge rowers were randomly selected, and their weight their senior year on the team was recorded. A curious crew fan wants to know if Oxford rowers weigh more on average than Cambridge rowers.

a. What parameter should be used to address the researcher’s question?
\[\mu_d \quad \mu_1 - \mu_2 \]
Explain your choice in one sentence.

b. State the hypotheses you would test (be sure to define your order of subtraction) to address the fan’s question.

c. You can assume the 16 rowers selected are a representative sample of rowers from the schools and that the weights are independent. What other assumption needs to be valid to perform your hypothesis test, and what graphs (specifically) would you make to check that assumption?

d. We will assume the conditions hold. Complete your test procedure, using the R output appropriate for your choice in a. to provide the numeric values of the test statistic and p-value for your hypotheses.

Paired t-test (Cambridge-Oxford)
t = 0.7501, df = 7, p-value = 0.2388
alternative hypothesis: true difference in means is greater than 0

Welch Two Sample t-test (Cambridge-Oxford)
t = 0.4259, df = 13.775, p-value = 0.3384
alternative hypothesis: true difference in means is greater than 0

Test statistic=
p-value =

e. Interpret your p-value.
5. Three students from Math 130, would like to investigate the habits of Amherst population in terms of athletic status and environmentally conscious habits. In particular, whether or not they compost at Val.

a. What is the appropriate analysis to perform (be specific) and state appropriate hypotheses.

Analysis:

Null:

Alternative:

b. The two-way table below summaries the result from the survey. Observed (Expected) is the table setup.

<table>
<thead>
<tr>
<th>Athletic Status \ Compost</th>
<th>YES</th>
<th>NO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varsity Athlete</td>
<td>41(43.73)</td>
<td>8(5.27)</td>
<td>49</td>
</tr>
<tr>
<td>Non-Varsity Athlete</td>
<td>28()</td>
<td>3()</td>
<td>31</td>
</tr>
<tr>
<td>Non-Athlete</td>
<td>72()</td>
<td>6(8.39)</td>
<td>78</td>
</tr>
<tr>
<td>Total</td>
<td>141</td>
<td>17</td>
<td>158</td>
</tr>
</tbody>
</table>

Please fill in expected counts in the table.
c List and check the conditions for your test procedure.

d Compute your df, and find the test statistic and p-value.
Test statistic:

df=

p-value=

f. Decision at a $\alpha=0.05$ significance level

6. Another four students from Math 130 are also interested in students’ composting habit, but they are more curious about its association with gender and run an appropriate test for their analysis. The two-way table below summaries the corresponding result. *Observed (Expected)* is the table setup.

<table>
<thead>
<tr>
<th>Gender \ Compost</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>48 (54.39)</td>
<td>13 (6.61)</td>
</tr>
<tr>
<td>Female</td>
<td>92 (85.61)</td>
<td>4 (10.39)</td>
</tr>
</tbody>
</table>

Assume the assumptions for the test are all met. The test statistic works out to be 11.355. State your *complete* conclusion in context.

Analysis:

Null:

Alternative:

df=

p-value=
Decision at a \(\alpha = 0.05 \) significance level

7. The overpopulation of Canadian Geese and their refusal to migrate because they are able to find food during the winter has caused some environmental problems. In particular, their feces run off into rivers and lakes when it rains and fertilizes algae (the reason why the campus pond is green). The abundance of algae blocks out the sun and makes it hard for other aquatic plants to undergo photosynthesis. If the proportion of algae in the water exceeds 70\%, then the aquatic plants will not get enough sun and die, reducing the oxygen in the water which would then kill fish. A researcher, who is interested in extending the hunting season for the geese, is going to test to see if the campus pond has enough algae to start killing fish. In a sample of 100 pounds of water he finds that there is 85 pounds of algae. The researcher is interested in \(\alpha = 0.05 \) level test.

State the null and alternative hypotheses.

Select the distribution to use (check first) and write down the appropriate test statistic.

Compute the \(p \)-value of the test statistic

State your conclusion (in one sentence, state whether or not the test rejects the null hypothesis and in another sentence apply the results to the problem).
Describe the Type I error (in one or two sentences). What are the consequences of making a Type I error?

Describe the Type II error (in one or two sentences). What are the consequences of making a Type II error?

8. Suppose the average mileage rating (in miles per gallon) of a particular model car is 28 mpg with a standard deviation of 8 mpg. A random sample of 64 cars of this model is selected.
 a) Completely describe the sampling distribution of the sample mean.

 b) What is the probability that the sample mean exceeds 32 mpg? Do you have to make any assumptions? Explain why or why not.
c) If one car is selected at random, what is the probability that the mileage rating exceeds 32 mpg? Do you have to make any assumptions? Explain why or why not.

d) If a randomly selected car has a mileage rating (in miles per gallon) of 55 mpg, would you consider this unusual? Justify your answer with calculations.

What conclusion might you draw?

e) If your random sample actually produced a sample mean equal to 55 mpg, would you consider this unusual? Justify your answer with calculations.

What conclusion might you draw?