1. [10 points] Evaluate each limit. Justify your answer.
(a) $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin x-\arctan x}$
(b) $\lim _{x \rightarrow \frac{1}{2}}(1+\ln (2 x))^{\tan (\pi x)}$
2. [15 points] Evaluate each integral.
(a) $\int_{0}^{\pi / 2} \cos ^{4} t d t$
(b) $\int_{0}^{\sqrt{2}} \frac{1}{\left(x^{2}+2\right)^{5 / 2}} d x$
(c) $\int \frac{\arctan x}{x^{2}} d x$
3. [15 points] For each improper integral, evaluate it if possible, or determine that it diverges.
(a) $\int_{1}^{\infty} \frac{1}{x \sqrt{x}+\sqrt{x}} d x$
(b) $\int_{0}^{\infty} \frac{x}{x^{2}+3 x+2} d x$
(c) $\int_{e}^{\infty} \frac{1}{x\left((\ln x)^{2}+\ln x\right)} d x$
4. [15 points] Evaluate each of the following sums (you may assume that each sum converges).
(a) $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$ (express your answer in terms of x).
(b) $4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}-\frac{4}{11}+\cdots$
(c) $\frac{1}{2}-\frac{1}{2^{2} \cdot 2}+\frac{1}{2^{3} \cdot 3}-\frac{1}{2^{4} \cdot 4}+\cdots$
(d) $\sum_{n=1}^{\infty} \frac{1+2^{n}}{n!}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n+1)!} x^{n}$, assuming that $x>0$ (express your answer in terms of x).
5. [20 points] For each series, determine whether it is absolutely convergent, conditionally convergent, or divergent. Justify your answers.
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n+\sqrt{n}}{n^{3}+1}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n!}{(2 n)^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{n^{2}+100 n}{3^{n}}$
(e) $\sum_{n=0}^{\infty} \frac{\arctan (n)}{n^{2}}$
6. [7 points] Find the interval of convergence for the following power series. Analyze carefully with full justification.

$$
\sum_{n=0}^{\infty} \frac{1}{n^{2}+n+1} x^{n}
$$

7. [4 points] Suppose that a patient takes a single dose of a certain medication every day for a long period of time. Each dose is 100 mg of medication, which is slowly removed from the patient's bloodstream according to the following rule: t days after the patient takes the dose, the number of milligrams left from that dose in the patient's bloodstream is $100 \cdot\left(\frac{4}{5}\right)^{t}$.
If the patient continues to take this medication once a day for a very long period of time, how many milligrams of medication will be in her bloodstream immediately after taking a dose?
8. [8 points] Consider the region bounded by the curves $y=e^{x}, y=e$, and the y-axis. This region is revolved around the line $x=-1$ to obtain a solid. Compute the volume of this solid.
9. [10 points] Consider the paramteric curve given by the following equations.

$$
\begin{aligned}
x(t) & =4 \sinh (t) \\
y(t) & =8 \cosh (t)
\end{aligned}
$$

(a) Determine the tangent line to this curve when $t=\ln 2$.
(b) Set up but do not evaluate an integral computing the arc length of this curve between $t=0$ and $t=\ln 2$.
(c) Set up but do not evaluate an integral for the surface area obtained by revolving this curve around the y-axis.
10. [12 points] For each region described, set up but do not evaluate an integral (or sum of integrals) for its area.
(a) The area bounded inside the polar curve $r=2-2 \cos \theta$.
(b) The area outside the polar curve $r=1$ and inside the polar curve $r=1-\sin \theta$.
(c) The area inside both of the polar curves $r=1$ and $r=2-2 \cos \theta$.
(d) The image below depicts the polar curve $r=1-\sqrt{2} \sin \theta$. Set up but do not evaluate an integral computing the area of the shaded region (enclosed by the "inner loop" of the curve).

