- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin \left(\frac{\pi}{6}\right), 4^{\frac{3}{2}}, e^{\ln 4}, \ln \left(e^{7}\right), e^{-\ln 5}, e^{3 \ln 3}, \arctan (\sqrt{3})$, or $\cosh (\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

1. [18 Points] Evaluate each of the following limits. Please justify your answer. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist. Simplify.
(a) $\lim _{x \rightarrow 0} \frac{x e^{x}-\arctan x}{\ln (1+5 x)-5 x}$
(b) Compute $\lim _{x \rightarrow 0} \frac{x e^{x}-\arctan x}{\ln (1+5 x)-5 x}$ again using series.
(c) $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}$
2. [22 Points] Evaluate each of the following integrals.
(a) $\int \frac{\cos x}{\left(4+\sin ^{2} x\right)^{\frac{5}{2}}} d x$
(b) $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
(c) $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$
3. [40 Points] For each of the following improper integrals, determine whether it converges or diverges. If it converges, find its value. Simplify.
(a) $\int_{6}^{7} \frac{8}{x^{2}-4 x-12} d x$
(b) $\int_{7}^{\infty} \frac{8}{x^{2}-4 x-12} d x$ Tip: Reuse your algebra work from part (a)
(c) $\int_{0}^{e^{3}} \frac{1}{x\left[3+(\ln x)^{2}\right]} d x$
(d) $\int_{0}^{1} \sqrt{x} \ln x d x$
4. [18 Points] Find the sum of each of the following series (which do converge). Simplify.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 5^{2 n+1}}{2^{5 n-1}}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(\ln 9)^{n}}{2^{n+1} \cdot n!}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{9^{n}(2 n)!}$
(d) $-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots$
(e) $-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\frac{\pi^{9}}{9!}-\ldots$
(f) $-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\ldots$
5. [26 Points] In each case determine whether the given series is absolutely convergent, conditionally convergent, or divergent. Justify your answers.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\arctan (7 n)}{n^{7}+7}$
(b) $\sum_{n=1}^{\infty} \arctan \left(\frac{n^{7}+1}{n^{7}+7}\right)$
(c) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{n+1}{n^{2}}\right)$
(d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 n)!\ln n}{(n!)^{2} e^{4 n} n^{n}}$
(e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+5}{n^{5}+2}$
6. [18 Points] Find the Interval and Radius of Convergence for each of the following power series. Analyze carefully and with full justification.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}(3 x-4)^{n}}{n^{2} \cdot 5^{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
(c) $\sum_{n=1}^{\infty} n!(x-6)^{n}$
7. [10 Points] Please analyze with detail and justify carefully. Simplify.
(a) Use MacLaurin series to Estimate $\int_{0}^{1} x \sin \left(x^{2}\right) d x$ with error less than $\frac{1}{1000}$.
(b) Use MacLaurin Series to Estimate $\frac{1}{\sqrt{e}}$ with error less than $\frac{1}{100}$.
8. [10 Points] Consider the region bounded by $y=\arctan x, y=0, x=0$ and $x=1$. Rotate the region about the vertical line $x=-1$. COMPUTE the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating shells.
9. [18 Points]
(a) Consider the Parametric Curve represented by $x=\ln t+\ln \left(1-t^{2}\right)$ and $y=\sqrt{8} \arcsin t$.

COMPUTE the arclength of this parametric curve for $\frac{1}{4} \leq t \leq \frac{1}{2}$. Show that the answer simplifies to $\ln \left(\frac{5}{2}\right)$
(b) Consider a different Parametric Curve represented by $x=t-e^{2 t}$ and $y=1-\sqrt{8} e^{t}$.

COMPUTE the surface area obtained by rotating this curve about the y-axis for $0 \leq t \leq 1$. Simplify. Show that the answer simplifies to $2 \pi\left(2-\frac{e^{4}}{2}\right)$
10. [20 Points] For each of the following problems, do the following two things:

1. Sketch the Polar curves and shade the described bounded region.
2. Set-Up but DO NOT EVALUATE the Integral representing the area of the described bounded region.
(a) The area bounded outside the polar curve $r=1+\sin \theta$ and inside the polar curve $r=3 \sin \theta$.
(b) The area bounded outside the polar curve $r=2$ and inside the polar curve $r=4 \sin \theta$.
(c) The area that lies inside both of the curves $r=1+\cos \theta$ and $r=1-\cos \theta$.
(d) The area bounded inside the polar curve $r=2+2 \cos \theta$.
