On Abelianization of Lie Algebroids and Lie Groupoids

Shuyu Xiao

March 17, 2023

Abelianization of Lie Algebroids

Definition

The abelianization of $\mathcal{A} \rightarrow M$ is:

Abelianization of Lie Algebroids

Definition

The abelianization of $\mathcal{A} \rightarrow M$ is:

- $\mathcal{A}^{a b} \rightarrow M$ abelian

Abelianization of Lie Algebroids

Definition

The abelianization of $\mathcal{A} \rightarrow M$ is:

- $\mathcal{A}^{a b} \rightarrow M$ abelian
- $p: \mathcal{A} \rightarrow \mathcal{A}^{\text {ab }}$ surjective morphism over I^{M}

Abelianization of Lie Algebroids

Definition

The abelianization of $\mathcal{A} \rightarrow M$ is:

- $\mathcal{A}^{a b} \rightarrow M$ abelian
- $p: \mathcal{A} \rightarrow \mathcal{A}^{\text {ab }}$ surjective morphism over I^{M}
such that for any $\mathcal{B} \rightarrow N$ abelian and morphism $\varphi: \mathcal{A} \rightarrow \mathcal{B}$, we have:

Existence of Abelianization (Algebroids)

Proposition (Contreras \& Fernandes)

Let $A \rightarrow M$ be a transitive Lie algebroid. Then its abelianization is $A^{a b}=A /\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]$.

Existence of Abelianization (Algebroids)

Proposition (Contreras \& Fernandes)

Let $A \rightarrow M$ be a transitive Lie algebroid. Then its abelianization is $A^{a b}=A /\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]$.

Proposition

A bundle of Lie algebras \mathfrak{g}_{M} has an abelianization if and only if $\overline{\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]}$ is a subbundle. In this case $\mathfrak{g}_{M}^{a b}=\mathfrak{g} / \overline{\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]}$.

Existence of Abelianization (Algebroids)

Proposition (Contreras \& Fernandes)

Let $A \rightarrow M$ be a transitive Lie algebroid. Then its abelianization is $A^{a b}=A /\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]$.

Proposition

A bundle of Lie algebras \mathfrak{g}_{M} has an abelianization if and only if $\overline{\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]}$ is a subbundle. In this case $\mathfrak{g}_{M}^{a b}=\mathfrak{g} / \overline{\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]}$.

Proposition

A regular Lie algebroid has an abelianization if its isotropy bundle has an abelianization. In this case $A^{a b}=A / \overline{\left[\mathfrak{g}_{M}, \mathfrak{g}_{M}\right]}$

Abelianization of Groupoids

Definition

The abelianization of $\mathcal{G} \rightrightarrows M$ is:

- $\mathcal{G}^{a b} \rightrightarrows M$ abelian
- $p: \mathcal{G} \rightarrow \mathcal{G}^{a b}$ surjective morphism over ${I d_{M}}$
such that for any $\mathcal{H} \rightrightarrows N$ abelian and morphism $\psi: \mathcal{G} \rightarrow \mathcal{H}$, we have:

Abelianization of Groupoids

Definition

The abelianization of $\mathcal{G} \rightrightarrows M$ is:

- $\mathcal{G}^{a b} \rightrightarrows M$ abelian
- $p: \mathcal{G} \rightarrow \mathcal{G}^{a b}$ surjective morphism over $I d_{M}$
such that for any $\mathcal{H} \rightrightarrows N$ abelian and morphism $\psi: \mathcal{G} \rightarrow \mathcal{H}$, we have:

This definition depends on the category.

Existence of Abelianization (Groupoids)

- A Lie group always has an abelianization:

$$
G^{a b}=G / \overline{(G, G)}
$$

Existence of Abelianization (Groupoids)

- A Lie group always has an abelianization:

$$
G^{a b}=G / \overline{(G, G)}
$$

- A set-theoretical groupoid always has an abelianization:

$$
\mathcal{G}^{a b}=\mathcal{G} /\left(\mathcal{G}_{M}, \mathcal{G}_{M}\right)
$$

Existence of Abelianization (Groupoids)

- A Lie group always has an abelianization:

$$
G^{a b}=G / \overline{(G, G)}
$$

- A set-theoretical groupoid always has an abelianization:

$$
\mathcal{G}^{a b}=\mathcal{G} /\left(\mathcal{G}_{M}, \mathcal{G}_{M}\right)
$$

- A topological groupoid always has an abelianization:

$$
\mathcal{G}^{a b}=\mathcal{G} / \overline{\left(\mathcal{G}_{M}, \mathcal{G}_{M}\right)}
$$

Existence of Abelianization (Groupoids)

- A Lie group always has an abelianization:

$$
G^{a b}=G / \overline{(G, G)}
$$

- A set-theoretical groupoid always has an abelianization:

$$
\mathcal{G}^{a b}=\mathcal{G} /\left(\mathcal{G}_{M}, \mathcal{G}_{M}\right)
$$

- A topological groupoid always has an abelianization:

$$
\mathcal{G}^{a b}=\mathcal{G} / \overline{\left(\mathcal{G}_{M}, \mathcal{G}_{M}\right)}
$$

- A Lie groupoid might not have a smooth abelianization:

$$
\mathcal{G}=S O(3) \times \mathbb{R}^{3} \rightrightarrows \mathbb{R}^{3}
$$

Weinstein Groupoid

- $\mathcal{G}(\mathcal{A}):=P(\mathcal{A}) / \mathcal{A}$-homotopies

Weinstein Groupoid

- $\mathcal{G}(\mathcal{A}):=P(\mathcal{A}) / \mathcal{A}$-homotopies
- \mathcal{A}-homotopy between $a_{0} \& a_{1}$:
$\gamma(i, \epsilon)=x_{i}, \quad a(t, i)=a_{i}(t), \quad b(i, \epsilon)=0, \quad i=0,1$

Genus Integration

- $\mathcal{G}_{g}(\mathcal{A}):=P(\mathcal{A}) / \mathcal{A}$-homologies

Genus Integration

- $\mathcal{G}_{g}(\mathcal{A}):=P(\mathcal{A}) / \mathcal{A}$-homologies
- \mathcal{A}-homology between $a_{0} \& a_{1}$:

$\left.h\right|_{U}=a(t, \epsilon) d t+b(t, \epsilon) d \epsilon$
$\gamma(i, \epsilon)=x_{i}, \quad a(t, i)=a_{i}(t), \quad b(i, \epsilon)=0$,
$i=0,1$

Relations between $\mathcal{G}(\mathcal{A})$ and $\mathcal{G}_{\mathcal{g}}(\mathcal{A})$

- \mathcal{A}-homology is courser than \mathcal{A}-homotopy:

$$
\begin{aligned}
p: \mathcal{G}(\mathcal{A}) & \rightarrow \mathcal{G}_{g}(\mathcal{A}) \\
{[a] } & \mapsto[a]_{g} .
\end{aligned}
$$

Relations between $\mathcal{G}(\mathcal{A})$ and $\mathcal{G}_{g}(\mathcal{A})$

- \mathcal{A}-homology is courser than \mathcal{A}-homotopy:

$$
\begin{aligned}
p: \mathcal{G}(\mathcal{A}) & \rightarrow \mathcal{G}_{g}(\mathcal{A}) \\
{[a] } & \mapsto[a]_{g} .
\end{aligned}
$$

- $\mathcal{G}_{g}(\mathcal{A})$ is the set-theoretical abelianization of $\mathcal{G}(\mathcal{A})$.

Relations between $\mathcal{G}(\mathcal{A})$ and $\mathcal{G}_{g}(\mathcal{A})$

- \mathcal{A}-homology is courser than \mathcal{A}-homotopy:

$$
\begin{aligned}
p: \mathcal{G}(\mathcal{A}) & \rightarrow \mathcal{G}_{g}(\mathcal{A}) \\
{[a] } & \mapsto[a]_{g} .
\end{aligned}
$$

- $\mathcal{G}_{g}(\mathcal{A})$ is the set-theoretical abelianization of $\mathcal{G}(\mathcal{A})$.
- $\mathcal{G}(\mathcal{A})$ smooth $\nRightarrow \mathcal{G}_{g}(\mathcal{A})$ smooth.

Integrating Lie Algebroids

Theorem (Crainic \& Fernandes)

For a Lie algebroid \mathcal{A}, the following statements are equivalent:
($-\mathcal{A}$ is integrable.
(1) $\mathcal{G}(\mathcal{A})$ is smooth.
(0) the monodromy groups $\mathcal{N}_{x}(\mathcal{A})$ are locally uniformly discrete.

Moreover, in this case, $\mathcal{G}(\mathcal{A})$ is the unique s-simply connected Lie groupoid integrating \mathcal{A}.

Ordinary Monodromy

\mathcal{N}_{X} is the image of:

$$
\partial_{x}: \pi_{2}(L, x) \rightarrow \mathcal{G}\left(\mathfrak{g}_{x}\right)
$$

Ordinary Monodromy

\mathcal{N}_{X} is the image of:

$$
\partial_{x}: \pi_{2}(L, x) \rightarrow \mathcal{G}\left(\mathfrak{g}_{x}\right) .
$$

Given

$$
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow \mathcal{A}_{L} \underset{\sigma}{\stackrel{\rho}{\underset{\sigma}{\longrightarrow}}} T L \longrightarrow 0,
$$

Ordinary Monodromy

\mathcal{N}_{X} is the image of:

$$
\partial_{x}: \pi_{2}(L, x) \rightarrow \mathcal{G}\left(\mathfrak{g}_{x}\right)
$$

Given

$$
0 \longrightarrow \mathfrak{g}_{L} \longrightarrow \mathcal{A}_{L} \stackrel{\rho}{\underset{\sigma}{\rightleftarrows}} T L \longrightarrow 0
$$

when $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$ is $Z\left(\mathfrak{g}_{L}\right)$-valued:

$$
\partial_{x}([\gamma])=\exp \left(\int_{\gamma} \Omega\right)
$$

Extended Monodromy

$$
0 \longrightarrow \mathfrak{g}_{L}^{a b} \longrightarrow \mathcal{A}_{L}^{a b} \underset{\sigma^{a b}}{\stackrel{\rho}{\rightleftarrows}} T L \longrightarrow 0 .
$$

Extended Monodromy

$$
0 \longrightarrow \mathfrak{g}_{L}^{a b} \longrightarrow \mathcal{A}_{L}^{a b} \underset{\sigma^{a b}}{\stackrel{\rho}{\rightleftarrows}} T L \longrightarrow 0 .
$$

$\mathcal{N}_{x}^{e x t}$ is the image of:

$$
\begin{aligned}
\partial_{x}^{e x t}: H_{2}\left(\tilde{L}^{h}, \mathbb{Z}\right) & \rightarrow \mathcal{G}\left(\mathfrak{g}_{x}^{a b}\right) \\
{[\gamma] } & \mapsto \exp \left(\int_{\gamma} q^{*} \Omega^{a b}\right) .
\end{aligned}
$$

Extended Monodromy

$$
0 \longrightarrow \mathfrak{g}_{L}^{a b} \longrightarrow \mathcal{A}_{L}^{a b} \underset{\sigma^{a b}}{\stackrel{\rho}{\rightleftarrows}} T L \longrightarrow 0 .
$$

$\mathcal{N}_{x}^{e x t}$ is the image of:

$$
\begin{aligned}
\partial_{x}^{e x t}: H_{2}\left(\tilde{L}^{h}, \mathbb{Z}\right) & \rightarrow \mathcal{G}\left(\mathfrak{g}_{x}^{a b}\right) \\
{[\gamma] } & \mapsto \exp \left(\int_{\gamma} q^{*} \Omega^{a b}\right) .
\end{aligned}
$$

- $q: \tilde{L}^{h} \rightarrow L$: holonomy cover of L relative to

$$
\nabla_{X s}=\left[\sigma^{a b}(X), s\right] \text { on } \mathfrak{g}_{L}^{a b}
$$

- $\Omega^{a b}:=\sigma^{a b}([X, Y])-\left[\sigma^{a b}(X), \sigma^{a b}(Y)\right]$

Relations between \mathcal{N}_{x} and $\mathcal{N}_{x}^{\text {ext }}$

Theorem (Contreras \& Fernandes)

The extended and ordinary monodromy homomorphisms of a Lie algebroid fit into a commutative diagram:

$$
\begin{aligned}
& \pi_{2}(L, x) \xrightarrow{\partial_{x}} \mathcal{G}\left(\mathfrak{g}_{x}\right) \\
& \downarrow h_{2} \downarrow \text {, } \\
& H_{2}\left(\tilde{L}^{h}, \mathbb{Z}\right) \xrightarrow{\partial_{x}^{\text {ext }}} \mathcal{G}\left(\mathfrak{g}_{x}^{a b}\right)
\end{aligned}
$$

where h_{2} is the Hurewicz map.

Results for Genus Integration

Theorem (Contreras \& Fernandes)

Let $\mathcal{A} \rightarrow M$ be a transitive Lie algebroid with trivial holonomy. The following statements are equivalent:
((the extended monodromy groups are discrete;
(0) the genus integraton $\mathcal{G}_{g}(\mathcal{A})$ is smooth;
((the abelianization $\mathcal{A}^{a b}$ has an abelian integration.
If any of these hold then $\mathcal{G}_{g}(\mathcal{A})$ has Lie algebroid isomorphic to $\mathcal{A}^{\text {ab }}$.

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ,

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$
- $\mathcal{A} \simeq T \mathcal{F} \ltimes \mathfrak{g}_{M}:$

$$
[(X, f),(Y, g)]=\left([X, Y],[f, g]_{\mathfrak{g}_{M}}+\nabla_{X} g-\nabla_{Y} f+\Omega[X, Y]\right)
$$

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$
- $\mathcal{A} \simeq T \mathcal{F} \ltimes \mathfrak{g}_{M}:$

$$
[(X, f),(Y, g)]=\left([X, Y],[f, g]_{\mathfrak{g}_{M}}+\nabla_{X} g-\nabla_{Y} f+\Omega[X, Y]\right)
$$

- Given $\mathfrak{g}_{M}, T \mathcal{F}$-connection on \mathfrak{g}_{M} and $\Omega \in \Omega^{2}\left(T \mathcal{F}, \mathfrak{g}_{M}\right)$ such that:

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$
- $\mathcal{A} \simeq T \mathcal{F} \ltimes \mathfrak{g}_{M}:$

$$
[(X, f),(Y, g)]=\left([X, Y],[f, g]_{\mathfrak{g}_{M}}+\nabla_{X} g-\nabla_{Y} f+\Omega[X, Y]\right)
$$

- Given $\mathfrak{g}_{M}, T \mathcal{F}$-connection on \mathfrak{g}_{M} and $\Omega \in \Omega^{2}\left(T \mathcal{F}, \mathfrak{g}_{M}\right)$ such that:
- $\nabla_{X}[f, g]=\left[\nabla_{X} f, g\right]+\left[f, \nabla_{X} g\right]$

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$
- $\mathcal{A} \simeq T \mathcal{F} \ltimes \mathfrak{g}_{M}$:

$$
[(X, f),(Y, g)]=\left([X, Y],[f, g]_{\mathfrak{g}_{M}}+\nabla_{X} g-\nabla_{Y} f+\Omega[X, Y]\right)
$$

- Given $\mathfrak{g}_{M}, T \mathcal{F}$-connection on \mathfrak{g}_{M} and $\Omega \in \Omega^{2}\left(T \mathcal{F}, \mathfrak{g}_{M}\right)$ such that:
- $\nabla_{X}[f, g]=\left[\nabla_{X} f, g\right]+\left[f, \nabla_{X} g\right]$
- $[\Omega(X, Y),-]_{\mathfrak{g}_{M}}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$

Regular Lie algebroid as Semiderict product

- Given $0 \longrightarrow \mathfrak{g}_{M} \longrightarrow \mathcal{A} \xrightarrow{\rho} T \mathcal{F} \longrightarrow 0$ with splitting σ, define:
- $\nabla_{X} f:=[\sigma(X), f]_{\mathcal{A}}$
- $\Omega(X, Y):=\sigma([X, Y])-[\sigma(X), \sigma(Y)]$
- $\mathcal{A} \simeq T \mathcal{F} \ltimes \mathfrak{g}_{M}:$

$$
[(X, f),(Y, g)]=\left([X, Y],[f, g]_{\mathfrak{g}_{M}}+\nabla_{X} g-\nabla_{Y} f+\Omega[X, Y]\right)
$$

- Given $\mathfrak{g}_{M}, T \mathcal{F}$-connection on \mathfrak{g}_{M} and $\Omega \in \Omega^{2}\left(T \mathcal{F}, \mathfrak{g}_{M}\right)$ such that:
- $\nabla_{X}[f, g]=\left[\nabla_{X} f, g\right]+\left[f, \nabla_{X} g\right]$
- $[\Omega(X, Y),-]_{\mathfrak{g}_{M}}=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$
- $\odot_{X, Y, Z}\left(\Omega([X, Y], Z)+\nabla_{X}(\Omega(Y, Z))\right)=0$

Constructing Examples

Given \mathfrak{g} and $\omega \in \Omega_{c l}^{2}(M ; Z(\mathfrak{g}))$, we can construct $\mathcal{A}_{\omega}=T M \oplus \mathfrak{g}$:

Constructing Examples

Given \mathfrak{g} and $\omega \in \Omega_{c l}^{2}(M ; Z(\mathfrak{g}))$, we can construct $\mathcal{A}_{\omega}=T M \oplus \mathfrak{g}$:

- $\rho=\operatorname{pr}_{\text {TM }}$

Constructing Examples

Given \mathfrak{g} and $\omega \in \Omega_{c l}^{2}(M ; Z(\mathfrak{g}))$, we can construct $\mathcal{A}_{\omega}=T M \oplus \mathfrak{g}$:

- $\rho=\operatorname{pr}_{T M}$
- $[(X, u)(Y, v)]=\left([X, Y],[u, v]_{\mathfrak{g}}+\mathcal{L}_{X}(v)-\mathcal{L}_{Y}(u)+\omega(X, Y)\right)$

Constructing Examples

Given \mathfrak{g} and $\omega \in \Omega_{c l}^{2}(M ; Z(\mathfrak{g}))$, we can construct $\mathcal{A}_{\omega}=T M \oplus \mathfrak{g}$:

- $\rho=\operatorname{pr}_{T M}$
- $[(X, u)(Y, v)]=\left([X, Y],[u, v]_{\mathfrak{g}}+\mathcal{L}_{X}(v)-\mathcal{L}_{Y}(u)+\omega(X, Y)\right)$

In this case, we can compute $\mathcal{N}_{x}(\mathcal{A})$ and $\mathcal{N}_{x}(\mathcal{A})$ as follows:

$$
\begin{aligned}
\mathcal{N}_{x}(\mathcal{A}) & =\left\{\exp \left(\int_{\gamma} \omega\right): \gamma \in \pi_{2}(M, x)\right\} \\
\mathcal{N}_{x}^{e x t}(\mathcal{A}) & =\left\{\exp \left(\int_{\gamma} \omega\right): \gamma \in H_{2}(M, \mathbb{Z})\right\}
\end{aligned}
$$

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

$$
\mathcal{N}_{x}(\mathcal{A})=\exp \left(\left(n_{1}+\lambda n_{2}\right) e_{1}\right), \mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\{1\}
$$

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

$$
\mathcal{N}_{x}(\mathcal{A})=\exp \left(\left(n_{1}+\lambda n_{2}\right) e_{1}\right), \mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\{1\}
$$

(2) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}-e_{4}\right)$:

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

$$
\mathcal{N}_{x}(\mathcal{A})=\exp \left(\left(n_{1}+\lambda n_{2}\right) e_{1}\right), \mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\{1\}
$$

(2) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}-e_{4}\right)$:

$$
\begin{gathered}
\mathcal{N}_{x}(\mathcal{A})=\exp \left(n_{1}\left(e_{1}+e_{4}\right)+\lambda n_{2}\left(e_{1}-e_{4}\right),\right. \\
\mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{\operatorname{ext}}=\exp \left(\left(n_{1}-\lambda n_{2}\right) e_{4}\right)
\end{gathered}
$$

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

$$
\mathcal{N}_{x}(\mathcal{A})=\exp \left(\left(n_{1}+\lambda n_{2}\right) e_{1}\right), \mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\{1\}
$$

(2) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}-e_{4}\right)$:

$$
\begin{gathered}
\mathcal{N}_{x}(\mathcal{A})=\exp \left(n_{1}\left(e_{1}+e_{4}\right)+\lambda n_{2}\left(e_{1}-e_{4}\right),\right. \\
\mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\exp \left(\left(n_{1}-\lambda n_{2}\right) e_{4}\right)
\end{gathered}
$$

(3) $M=\mathbb{T}^{2} \times \mathbb{T}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{T}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{T}^{2}}\left(e_{1}-e_{4}\right)$:

Examples

- $\mathfrak{g}: \mathbb{R}^{4}$ equipped with $\left[e_{2}, e_{3}\right]=e_{1},\left[e_{i}, e_{j}\right]=0$ otherwise;
- $[\mathfrak{g}, \mathfrak{g}]=<e_{1}>, Z(\mathfrak{g})=<e_{1}, e_{4}>$.
(1) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}} e_{1}+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}} e_{1}$:

$$
\mathcal{N}_{x}(\mathcal{A})=\exp \left(\left(n_{1}+\lambda n_{2}\right) e_{1}\right), \mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\{1\}
$$

(2) $M=\mathbb{S}^{2} \times \mathbb{S}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{S}^{2}}\left(e_{1}-e_{4}\right)$:

$$
\begin{gathered}
\mathcal{N}_{x}(\mathcal{A})=\exp \left(n_{1}\left(e_{1}+e_{4}\right)+\lambda n_{2}\left(e_{1}-e_{4}\right)\right. \\
\mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\mathcal{N}_{x}^{e x t}=\exp \left(\left(n_{1}-\lambda n_{2}\right) e_{4}\right)
\end{gathered}
$$

(3) $M=\mathbb{T}^{2} \times \mathbb{T}^{2}, \omega=p r_{1}^{*} \omega_{\mathbb{T}^{2}}\left(e_{1}+e_{4}\right)+\lambda p r_{2}^{*} \omega_{\mathbb{T}^{2}}\left(e_{1}-e_{4}\right)$:

$$
\mathcal{N}_{x}(\mathcal{A})=\mathcal{N}_{x}\left(\mathcal{A}^{a b}\right)=\{1\}, \mathcal{N}_{x}^{e x t}=\exp \left(\left(n_{1}-\lambda n_{2}\right) e_{4}\right)
$$

Thank you!

