# Coisotropicity of fixed points under torus action on the variety of Lagrangian subalgebras Amherst College

#### Song Gao

University of Notre Dame

March 15, 2023

Song Gao (University of Notre Dame) Coisotropicity of fixed points under torus activ

March 15, 2023 1 / 17

## Outline



Introduce Lagrangian subalgebras and coisotropic subalgebras

- 3 Results on  $\overline{G}$
- 4 Example of  $\mathfrak{sl}(2,\mathbb{C})$

### Introduction

In this talk, I will introduce my recent work on the topic of coisotropic subalgebras of Lie bialgebras, a problem initiated in the work of Marco Zambon. My work is grounded in the theory of semisimple Lie algebras and algebro-geometric methods including linear algebraic groups and toric varieties.

## Standard Lie bialgebra structure on $\mathfrak{g}$

- Let  $\mathfrak{g}$  be a semisimple Lie algebra over  $\mathbb{C}$ , with adjoint algebraic group G.
- Let H be a fixed maximal torus of G, and B be a fixed Borel subgroup of G containing H with the set of simple roots Γ. Let N := [B, B] be the unipotent radical of B. Denote by h, b, n the Lie algebras of H, B, N, respectively.
- Recall that  $\mathfrak{g}$  has a standard Lie bialgebra structure induced by the standard Manin triple  $(\mathfrak{g} \oplus \mathfrak{g}, \mathfrak{g}_{\Delta}, \mathfrak{g}_{st}^*)$ , where  $\mathfrak{g}_{\Delta} := \{(x, x) | x \in \mathfrak{g}\}$  and  $\mathfrak{g}_{st}^* := \mathfrak{h}_{-\Delta} + \mathfrak{n} \oplus \mathfrak{n}^- = \{(x + y, -x + z) | x \in \mathfrak{h}, y \in \mathfrak{n}, z \in \mathfrak{n}^-\}$ , and the nondegenerate invariant bilinear form on  $\mathfrak{g} \oplus \mathfrak{g}$  is given by

$$\langle (x_1, x_2), (y_1, y_2) \rangle = \ll x_1, y_1 \gg - \ll x_2, y_2 \gg$$
 (1)

 We regard g as g<sub>Δ</sub>, and g<sup>\*</sup> as g<sup>\*</sup><sub>st</sub>, then g ≅ g<sub>Δ</sub> is a Lie bialgebra and G is a Poisson-Lie group.

Define the variety of Lagrangian subalgebras

- A Lie subalgebra l of g ⊕ g is called Lagrangian, if dim(l) = dim(g) and l an isotropic subspace of (g ⊕ g, ⟨, ⟩).
- Let  $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$  denote the set of Lagrangian subalgebras of  $\mathfrak{g} \oplus \mathfrak{g}$ , i.e.

 $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g}) := \{\mathfrak{l} \subset \mathfrak{g} \oplus \mathfrak{g} | \mathfrak{l} \text{ is a Lagrangian subalgebra of } \mathfrak{g} \oplus \mathfrak{g}\},\$ 

- Since being subalgebras and being isotropic are polynomial conditions in Gr(n, g ⊕ g), L(g ⊕ g) is an algebraic subset in Gr(n, g ⊕ g). We call L(g ⊕ g) the variety of Lagrangian subalgebras of g ⊕ g.
- $G \times G$  acts on  $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$  via the natural adjoint action.

ヘロト 不得 トイヨト イヨト 二日

## Examples of Lagrangian subalgebras

• Recall the bilinear form on  $\mathfrak{g} \oplus \mathfrak{g}$ :

$$\langle (x_1, x_2), (y_1, y_2) \rangle = \ll x_1, y_1 \gg - \ll x_2, y_2 \gg$$
 (2)

• Basic examples:  $\mathfrak{g}_{\Delta}$ ,  $\mathfrak{g}_{-\Delta}$ ,  $\mathfrak{g}_{st}^*$  are Lagrangian subalgebras.

- Other examples:
  - Let  $S \subseteq \Gamma$  be a subset of simple roots. Define

$$\zeta_{\mathcal{S}} := \mathfrak{n}_{\mathcal{S}} \oplus \mathfrak{n}_{\mathcal{S}}^{-} + (\mathfrak{m}_{\mathcal{S}})_{\Delta} \in \mathcal{L}(\mathfrak{g} \oplus \mathfrak{g}),$$

Then  $\zeta_S$  is a Lagrangian subalgebra.

• Any  $(G \times G)$ -translation of the aboves are Lagrangian subalgebras.

Define coisotropic subalgebras (Zambon)

Since  $\mathfrak{g}$  is a Lie bialgebra, its dual  $\mathfrak{g}^*$  is a Lie algebra.

 $\bullet$  A subalgebra  $\mathfrak m$  of  $\mathfrak g$  is called coisotropic if  $\mathfrak m^0$  is a subalgebra of  $\mathfrak g^*,$  where

$$\mathfrak{m}^{0} := \{\xi \in \mathfrak{g}^{*} | \xi(x) = 0, \forall x \in \mathfrak{m} \}$$

is the annihilator of  $\mathfrak{m}$  in  $\mathfrak{g}^*$ .

- (Result from M. Zambon) Coisotropic subalgebras can be embedded into the variety of Lagrangian subalgebras.
  - Recall the identification g<sup>\*</sup> ≅ g<sup>\*</sup><sub>st</sub> ⊂ g ⊕ g. Let m<sup>⊥</sup> be the counterpart of m<sup>0</sup> in g<sup>\*</sup><sub>st</sub> ⊂ g ⊕ g. Then it's easy to check that (m)<sub>Δ</sub> ⊕ m<sup>⊥</sup> is a Lagrangian subalgebra of g ⊕ g.

We call a Lagrangian subalgebra  ${\mathfrak l}$  coisotropic, if  ${\mathfrak l}$  comes from the above construction.

Define the subvariety of coisotropic subalgebras

 $\mathcal{CL}(\mathfrak{g} \oplus \mathfrak{g}) := \{\mathfrak{l} \in \mathcal{L}(\mathfrak{g} \oplus \mathfrak{g}) | \mathfrak{l} \text{ is a coisotropic Lagrangian subalgebra} \}.$ 

- In other words,  $\mathfrak{l} \in \mathcal{CL}(\mathfrak{g} \oplus \mathfrak{g})$  iff  $\mathfrak{l} = \mathfrak{m}_{\Delta} \oplus \mathfrak{m}^{\perp}$  for a coisotropic subalgebra  $\mathfrak{m}$  of  $\mathfrak{g}$ .
- Fact:  $\mathcal{CL}(\mathfrak{g}\oplus\mathfrak{g})\subset\mathcal{L}(\mathfrak{g}\oplus\mathfrak{g})$  is a subvariety.
- Fact: There is a Poisson structure  $\pi_{\mathcal{L}}$  on  $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$ . If  $\mathfrak{l} \in \mathcal{CL}(\mathfrak{g} \oplus \mathfrak{g})$  then  $\pi_{\mathcal{L}}(\mathfrak{l}) = 0$ .
- Fact:  $H_{\Delta} \subset G \times G$  acts on  $\mathcal{CL}(\mathfrak{g} \oplus \mathfrak{g})$ .

# Strategy

It's hard to determine coisotropic subalgebras of  $\mathfrak{g} \oplus \mathfrak{g}$ . Instead, I study the  $H_{\Delta}$ -fixed points on  $\mathcal{CL}(\mathfrak{g} \oplus \mathfrak{g})$ .

- Structure of L(g ⊕ g) (irreducible components, (G × G)-orbits, Poisson structure, etc.) is well studied. (Sam Evens and Jiang-Hua Lu, papers on Lagrangian subalgebras)
- Can study  $H_{\Delta}$ -fixed points in  $\mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$  at first, then check the coisotropicity of these fixed points.
- *G* := (*G* × *G*) ⋅ 𝔅<sub>Δ</sub> ⊂ ℒ(𝔅 ⊕ 𝔅) is one of the irreducible componets of ℒ(𝔅 ⊕ 𝔅), which is called the wonderful compactification of *G* (De Concini-Procesi).
- In this talk, I will focus on  $\overline{G}$ , give its  $H_{\Delta}$  fixed points and check their coisotropicity.
- (G)<sup>H<sub>Δ</sub></sup> turns out to be a union of toric varieties. This fixed point set is describable in terms of combinatorics of Weyl group.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

## Irreducible components of fixed point set

- $\zeta_0 := \mathfrak{h}_\Delta + \mathfrak{n} \oplus \mathfrak{n}^- \in \mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$
- Let  $\overline{G}^{H_{\Delta}} = \bigcup X_i$  be the irreducible decomposition. Since  $\overline{G}^{H_{\Delta}}$  is smooth (a result by lversen, 1972), the irreducible components  $X_i$ 's are connected components.
- Fact: each irreducible component X<sub>i</sub> must contain some point of the form (y, w) · ζ<sub>0</sub>. Define X<sub>y,w</sub> to be the irreducible component containing (y, w) · ζ<sub>0</sub>. Therefore, each irreducible component X<sub>i</sub> must be of the form X<sub>y,w</sub>
- It suffices to study  $X_{y,w}$ 's, which turn out to be toric varieties.

#### More notations

For a subset S ⊆ Γ, the standard parabolic subalgebra p<sub>S</sub> has the Levi decomposition p<sub>S</sub> = m<sub>S</sub> ⊕ n<sub>S</sub> and the opposite H-stable nilradical n<sub>S</sub><sup>-</sup>. Let g<sub>S</sub> := [m<sub>S</sub>, m<sub>S</sub>] with the corresponding adjoint group G<sub>S</sub>.

• Let 
$$\zeta_S := \mathfrak{n}_S \oplus \mathfrak{n}_S^- + (\mathfrak{m}_S)_\Delta \in \mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$$
 and  
 $K_S := \overline{(H \times H) \cdot \zeta_S} \subset \mathcal{L}(\mathfrak{g} \oplus \mathfrak{g})$ . Then I show that  $K_S$  is a toric  
variety for the torus  $H_S := G_S \cap H$ .

- For any  $y, w \in W$ , define  $I_{y,w} := \{ \alpha \in \Gamma | y \cdot \alpha = w \cdot \alpha \}$
- For  $w \in W$ , let  $\Phi_w := \{\gamma \in \Phi^+ | w^{-1}(\gamma) \in \Phi^-\}$ .

## Recall: toric variety

- Definition: A toric variety X is a normal variety that contains a torus
   *T* as a dense open subset, together with an action map *T* × *X* → *X* which extends the natural action of *T* on itself.
- (Roughly) A fan in  $\mathbb{R}^n$  is a collection of "cones".
- Fact: A toric variety X is completely determined by its fan Fan(X). The cones in the fan Fan(X) give an affine open cover for X.
- Examples of toric varieties: projective spaces

## Main results (part I)

- The subvariety Σ<sub>S</sub> := ⊔<sub>J⊆S</sub>(H × H) · ζ<sub>J</sub> is isomorphic to C<sup>|S|</sup>, and it is an open affine subset in K<sub>S</sub>. In particular, the dimension of K<sub>S</sub> is |S|.
- Let *H<sub>S</sub>* be the maximal torus of *G<sub>S</sub>*. Then *K<sub>S</sub>* is a toric variety for the torus *H<sub>S</sub>*, with an open affine cover

$$K_{\mathcal{S}} = \bigcup_{v \in W_{\mathcal{S}}} (v, v) \Sigma_{\mathcal{S}}$$

Its fan is given by the Weyl chamber decomposition of  $\mathfrak{g}_S$ , for which the Weyl group is  $W_S$ .

•  $X_{y,w} = (y, w) \cdot K_{l_{y,w}}$  is a (translation of) toric variety.

# Main results (part II)

- There exists coisotropic points in X<sub>y,w</sub> if and only if the following conditions hold:
   (1) (wy<sup>-1</sup>)<sup>2</sup> = 1 (2) Φ<sub>y</sub> ∩ Φ<sub>w</sub> = Ø
- If the above conditions hold, then there are finitely many coisotropic points in X<sub>y,w</sub>, each one corresponds to a subset J of I<sub>y,w</sub>.
- Thus, the coisotropic points in  $\overline{G}^{H_{\Delta}}$  form a finite set.

## Rank 1 example

We look at the example when  $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{C})$ .

•  $G = PGL(2, \mathbb{C}) \subset P(M^{2 \times 2}(\mathbb{C}))$ , take H to be diagonal matrices of G. •  $(0, 1) = (0, 0) = M^{2 \times 2}(\mathbb{C})$ 

Let 
$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in M^{2 \times 2}(\mathbb{C})$$

- Fact: G
   <sup>⊂</sup> = P(M<sup>2×2</sup>(ℂ)). Moreover, there exists a G × G-equivariant isomorphism from P(M<sup>2×2</sup>(ℂ)) to G ⊂ L(𝔅 ⊕ 𝔅), which sends [id] to 𝔅<sub>Δ</sub>.
- The H<sub>∆</sub>-fixed points in P(M<sup>2×2</sup>(C)) are {diagonal matrices} ⊔ {[E]} ⊔ {[F]}.
- In the language of Lagrangian subalgebras, the H<sub>Δ</sub>-fixed points in G
  are (H×H) ⋅ 𝔅<sub>Δ</sub>, (e, s) ⋅ ζ<sub>0</sub> and (s, e) ⋅ ζ<sub>0</sub>.
- In the above, ζ<sub>0</sub> := 𝔥<sub>Δ</sub> + 𝑘 ⊕ 𝑘<sup>−</sup>, and s ∈ 𝑐 is the order 2 element in the Weyl group of 𝔅𝔅(2). The three pieces of the disjoint union are toric varieties for 𝑘, {1} and {1} respectively.

白玉 不得天 不是天 不是天 二臣

## On the other irreducible components

The above results show that the  $H_{\Delta}$ -fixed points in  $\overline{G}$  are union of toric varieties, in which the coisotropic locus are discrete.

I can apply the same method to the other irreducible components of  $\mathcal{L}(\mathfrak{g}\oplus\mathfrak{g}){:}$ 

 For a general irreducible component L(S, T, d) of L(g ⊕ g), its H<sub>Δ</sub>-fixed points are products of toric varieties and a homogeneous space of a special orthogonal group. Among these fixed points, the coisotropic points along the toric variety factors are discrete.

# Thank you!

Song Gao (University of Notre Dame) Coisotropicity of fixed points under torus action

э

・ロト ・四ト ・ヨト ・ヨト