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Introduction

In this talk, I will introduce my recent work on the topic of coisotropic
subalgebras of Lie bialgebras, a problem initiated in the work of Marco
Zambon. My work is grounded in the theory of semisimple Lie algebras
and algebro-geometric methods including linear algebraic groups and toric
varieties.
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Standard Lie bialgebra structure on g

Let g be a semisimple Lie algebra over C, with adjoint algebraic group
G .

Let H be a fixed maximal torus of G , and B be a fixed Borel
subgroup of G containing H with the set of simple roots Γ. Let
N := [B,B] be the unipotent radical of B. Denote by h, b, n the Lie
algebras of H,B,N, respectively.

Recall that g has a standard Lie bialgebra structure induced by the
standard Manin triple (g⊕ g, g∆, g

∗
st), where g∆ := {(x , x)|x ∈ g}

and g∗st := h−∆ + n⊕ n− = {(x + y ,−x + z)|x ∈ h, y ∈ n, z ∈ n−},
and the nondegenerate invariant bilinear form on g⊕ g is given by

〈(x1, x2), (y1, y2)〉 =� x1, y1 � −� x2, y2 � (1)

We regard g as g∆, and g∗ as g∗st , then g ∼= g∆ is a Lie bialgebra and
G is a Poisson-Lie group.
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Define the variety of Lagrangian subalgebras

A Lie subalgebra l of g⊕ g is called Lagrangian, if dim(l) = dim(g)
and l an isotropic subspace of (g⊕ g, 〈 , 〉).

Let L(g⊕ g) denote the set of Lagrangian subalgebras of g⊕ g, i.e.

L(g⊕ g) := {l ⊂ g⊕ g|l is a Lagrangian subalgebra of g⊕ g},

Since being subalgebras and being isotropic are polynomial conditions
in Gr(n, g⊕ g), L(g⊕ g) is an algebraic subset in Gr(n, g⊕ g). We
call L(g⊕ g) the variety of Lagrangian subalgebras of g⊕ g.

G × G acts on L(g⊕ g) via the natural adjoint action.
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Examples of Lagrangian subalgebras

Recall the bilinear form on g⊕ g:

〈(x1, x2), (y1, y2)〉 =� x1, y1 � −� x2, y2 � (2)

Basic examples: g∆, g−∆, g∗st are Lagrangian subalgebras.

Other examples:
I Let S ⊆ Γ be a subset of simple roots. Define

ζS := nS ⊕ n−S + (mS)∆ ∈ L(g⊕ g),

Then ζS is a Lagrangian subalgebra.

Any (G × G )-translation of the aboves are Lagrangian subalgebras.
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Define coisotropic subalgebras (Zambon)

Since g is a Lie bialgebra, its dual g∗ is a Lie algebra.

A subalgebra m of g is called coisotropic if m0 is a subalgebra of g∗,
where

m0 := {ξ ∈ g∗|ξ(x) = 0,∀x ∈ m}

is the annihilator of m in g∗.

(Result from M. Zambon) Coisotropic subalgebras can be embedded
into the variety of Lagrangian subalgebras.

I Recall the identification g∗ ∼= g∗st ⊂ g⊕ g. Let m⊥ be the counterpart
of m0 in g∗st ⊂ g⊕ g. Then it’s easy to check that (m)∆ ⊕m⊥ is a
Lagrangian subalgebra of g⊕ g.

We call a Lagrangian subalgebra l coisotropic, if l comes from the
above construction.
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Define the subvariety of coisotropic subalgebras

CL(g⊕ g) := {l ∈ L(g⊕ g)|l is a coisotropic Lagrangian subalgebra}.

In other words, l ∈ CL(g⊕ g) iff l = m∆ ⊕m⊥ for a coisotropic
subalgebra m of g.

Fact: CL(g⊕ g) ⊂ L(g⊕ g) is a subvariety.

Fact: There is a Poisson structure πL on L(g⊕ g). If l ∈ CL(g⊕ g)
then πL(l) = 0.

Fact: H∆ ⊂ G × G acts on CL(g⊕ g).
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Strategy

It’s hard to determine coisotropic subalgebras of g⊕ g. Instead, I study the
H∆-fixed points on CL(g⊕ g).

Structure of L(g⊕ g) (irreducible components, (G × G )-orbits,
Poisson structure, etc.) is well studied. (Sam Evens and Jiang-Hua
Lu, papers on Lagrangian subalgebras)

Can study H∆-fixed points in L(g⊕ g) at first, then check the
coisotropicity of these fixed points.

G := (G × G ) · g∆ ⊂ L(g⊕ g) is one of the irreducible componets of
L(g⊕ g), which is called the wonderful compactification of G (De
Concini-Procesi).

In this talk, I will focus on G , give its H∆ fixed points and check their
coisotropicity.

(G )H∆ turns out to be a union of toric varieties. This fixed point set
is describable in terms of combinatorics of Weyl group.
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Irreducible components of fixed point set

ζ0 := h∆ + n⊕ n− ∈ L(g⊕ g)

Let G
H∆ = ∪Xi be the irreducible decomposition. Since G

H∆ is
smooth (a result by Iversen, 1972), the irreducible components Xi ’s
are connected components.

Fact: each irreducible component Xi must contain some point of the
form (y ,w) · ζ0. Define Xy ,w to be the irreducible component
containing (y ,w) · ζ0. Therefore, each irreducible component Xi must
be of the form Xy ,w

It suffices to study Xy ,w ’s, which turn out to be toric varieties.
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More notations

For a subset S ⊆ Γ, the standard parabolic subalgebra pS has the Levi
decomposition pS = mS ⊕ nS and the opposite H-stable nilradical n−S .
Let gS := [mS ,mS ] with the corresponding adjoint group GS .

Let ζS := nS ⊕ n−S + (mS)∆ ∈ L(g⊕ g) and

KS := (H × H) · ζS ⊂ L(g⊕ g). Then I show that KS is a toric
variety for the torus HS := GS ∩ H.

For any y ,w ∈W , define Iy ,w := {α ∈ Γ|y · α = w · α}
For w ∈W , let Φw := {γ ∈ Φ+|w−1(γ) ∈ Φ−}.
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Recall: toric variety

Definition: A toric variety X is a normal variety that contains a torus
T as a dense open subset, together with an action map T ×X −→ X
which extends the natural action of T on itself.

(Roughly) A fan in Rn is a collection of ”cones”.

Fact: A toric variety X is completely determined by its fan Fan(X ).
The cones in the fan Fan(X ) give an affine open cover for X.

Examples of toric varieties: projective spaces
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Main results (part I)

The subvariety ΣS := tJ⊆S(H ×H) · ζJ is isomorphic to C|S|, and it is
an open affine subset in KS . In particular, the dimension of KS is |S |.
Let HS be the maximal torus of GS . Then KS is a toric variety for the
torus HS , with an open affine cover

KS =
⋃

v∈WS

(v , v)ΣS

Its fan is given by the Weyl chamber decomposition of gS , for which
the Weyl group is WS .

Xy ,w = (y ,w) · KIy,w is a (translation of) toric variety.
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Main results (part II)

There exists coisotropic points in Xy ,w if and only if the following
conditions hold:
(1) (wy−1)2 = 1 (2) Φy ∩ Φw = ∅
If the above conditions hold, then there are finitely many coisotropic
points in Xy ,w , each one corresponds to a subset J of Iy ,w .

Thus, the coisotropic points in G
H∆ form a finite set.
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Rank 1 example
We look at the example when g = sl(2,C).

G = PGL(2,C) ⊂ P(M2×2(C)), take H to be diagonal matrices of G .

Let E =

(
0 1
0 0

)
,F =

(
0 0
1 0

)
∈ M2×2(C)

Fact: G ∼= P(M2×2(C)). Moreover, there exists a G × G -equivariant
isomorphism from P(M2×2(C)) to G ⊂ L(g⊕ g), which sends [id ] to
g∆.

The H∆-fixed points in P(M2×2(C)) are
{diagonal matrices} t {[E ]} t {[F ]}.
In the language of Lagrangian subalgebras, the H∆-fixed points in G
are (H × H) · g∆, (e, s) · ζ0 and (s, e) · ζ0.

In the above, ζ0 := h∆ + n⊕ n−, and s ∈W is the order 2 element in
the Weyl group of sl(2). The three pieces of the disjoint union are
toric varieties for H, {1} and {1} respectively.
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On the other irreducible components

The above results show that the H∆-fixed points in G are union of toric
varieties, in which the coisotropic locus are discrete.
I can apply the same method to the other irreducible components of
L(g⊕ g):

For a general irreducible component L(S ,T , d) of L(g⊕ g), its
H∆-fixed points are products of toric varieties and a homogeneous
space of a special orthogonal group. Among these fixed points, the
coisotropic points along the toric variety factors are discrete.
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Thank you!
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