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Abstract

It is known that the dynamical symmetry of the Kepler problem allows one to map the

phase space curves of the problem to geodesics on cotangent bundles of 3-manifolds. The

scattering state Kepler problem, also known as Rutherford scattering, is symmetric under

the action of the Lorentz group SO(1, 3), and its phase space curves map to geodesics

on the cotangent bundle of 3-hyperboloid H3. I present new scattering variables in

the momentum space that allows the scattering state Kepler problem to be cast in a

form that is in an exact correspondence with that of the relativistic free particle. I

call this correspondence the Kepler-Lorentz duality. Using these variables, I present the

dualities in the boost representations of SO(1, 3) and SL(2,C) and in the corresponding

four-vectors and spinors. Extending the symmetry, I consider the dual problems in the

contexts of conformal symmetry and twistors, where the various energy regimes of the

Kepler problem are brought together in a unified context and the equivalence of the

dual problems to the 4D inverted harmonic oscillator is shown. In light of the recent

connections between the symmetries of the Kepler problem and of planar N = 4 super

Yang-Mills theory, I discuss a similar possible analogous relationship between Kepler-

Lorentz duality and gauge-gravity duality.
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Chapter 1

Introduction

Gravity and electromagnetism: these are the two forces of nature that are readily expe-

rienced at the scale of a human being. Both are classically described by the same force

law, called the inverse-square law, where the strength of the force is inversely pro-

portional to the square of the distance from its source. The study of motions of a body

subject to an inverse-square force is called the Kepler problem, with the Hamiltonian

H =
p2

2m
− k

r
, (1.1)

where k is the coupling constant. Due to the presence of an extra symmetry unique to

the system, the Kepler problem has many special properties that manifest themselves

classically as well as quantum mechanically. For example, the bound states of the Kepler

problem and the harmonic oscillator are the only classical central-force systems that

have closed orbits for every possible set of initial conditions (Bertrand’s theorem). The

hydrogen atom, a quantum mechanical bound-state Kepler problem, is fully quantizable

using only the algebraic commutation relations. Rutherford (Coulomb) scattering, a

quantum mechanical scattering-state Kepler problem, has equal classical and quantum

scattering cross-sections. In this thesis, I propose an example where seemingly different

systems are revealed to be different manifestations of the same mathematical problem

by the consideration of their symmetries.

In Chapter 2, we present the dynamical symmetry of the Kepler problem, where the

problem is revealed to possess an extra symmetry upon the consideration of its momen-

tum space. We consider two compelling roads, one algebraic and the other geometric,

to quantization. In quantization, we follow closely Ch. 2 of [1] and Ch. 4 of [2]. This

chapter captures our motivation for investigating the symmetries of the Kepler problem.

In Chapter 3, we show two methods of regularization, where we place the Kepler

problem in more natural settings in which infinities do not occur. The Moser method

and the Kustaanheimo-Stiefel method not only help in regularization, but also reveal

deep insights about the symmetries of the Kepler problem. Here, we again follow closely

1



Introduction 2

Figure 1.1: Symmetry groups, their relationships, and objects on which they act

the treatment of the Moser method in [1] and the of the Kustaanheimo-Stiefel method in

[2]. This chapter provides some of the essential mathematics that is required for Chapter

5. In fact, we will revisit the Moser method and the Kustaanheimo-Stiefel method again.

In Chapter 4, we cast, motivated by the shared symmetry group SO(1, 3), the

scattering state Kepler problem in a form that is in an exact correspondence with the

relativistic free particle. We call this correspondence the Kepler-Lorentz duality. We

present the duality by showing the explicit forms of the boost transformations of SO(1, 3)

and the four-vectors corresponding to 4-velocity, 4-momentum, and 4-position in the

respective dual contexts. The boost transformations of SL(2,C), a double cover of

SO(1, 3), is also naturally obtained through the duality, and we present a possible dual

extension of the corresponding quantity in the spinor formulation of relativity. Apart

from some background material, the ideas presented in this chapter are wholly original

to the author.

In Chapter 5, we lift the symmetry of the Kepler-Lorentz duality to the conformal

group C(1, 3) of Minkowski space R1,3, where various energy regimes of the Kepler prob-

lem are brought together in a unified context as an extension of the Moser method1.

We also recast the problem in the context of twistor theory, where we show the equiv-

alence of the 3d bound/scattering Kepler problem to the 4d simple/inverted harmonic

oscillator by revisiting the Kustaanheimo-Stiefel method. Though a majority of the

mathematical results presented in the chapter is grounded on Ch. 6-7 of Ref. [2], we

provide considerably different physical interpretations of the results using our knowl-

edge of the Kepler-Lorentz duality. We also simplify the presentation considerably by

providing a more intuitive interpretation of the dense mathematics. Remarkably, the

conformal symmetry gives an extended phase manifold of the Kepler problem, where

some group-geometric and dimensional properties of the Kepler-Lorentz duality seem

to be related to that of gauge-gravity duality, originally formulated in the context of

string theory. In light of the recent connections between the symmetries of the Kepler

problem and (planar) N = 4 supersymmetric Yang-Mills theory, we suggest that the

1The groups SO(2, 4) and SU(2, 2) are respectively double and quadruple covers of the conformal
group C(1, 3) of Minkowski space.
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AdS5/CFT4 duality may be a high energy extension of the classical symmetries appar-

ent in the Kepler-Lorentz duality. In addition, the Kustaanheimo-Stiefel map, naturally

obtained via twistor variables, suggests the equivalence of the 3D scattering state Kepler

problem, 4D relativistic free-particle kinematics, and 4D inverted harmonic oscillator.

Both seem to be exciting future research directions.

In our presentation, we assume the reader has a working knowledge of the basics of

Lie groups and algebras, differential geometry, and Hamiltonian mechanics. Figure 1.1

summarizes the layout of this thesis.



Chapter 2

A Higher Symmetry

The Kepler problem exhibits a greater symmetry than is expected in the general class

of central force problems. Namely, the Kepler problem is symmetric under generalized

rotations in R4 or R1,3 rather than simply in R3. I will first motivate the greater symme-

try of the problem by introducing an extra conserved quantity, the Laplace-Runge-Lenz

vector. Then, I will associate the group of symmetries of the Kepler problem with cor-

responding invariant geometries by providing two related methods of quantization. A

solid understanding of the interplay between group theory and geometry will be essential

to our subsequent discussions.

2.1 Dynamical Symmetry

In a central force problem in 3-dimensional Euclidean space, we expect the energy H

and the angular momentum L to be conserved by time-translational and 3D rotational

symmetry, respectively. Such problems with fixed H generally remain invariant under

the group action of SO(3), the group of proper rotations in R3. In the special case

of Kepler potentials (∼ 1/r), however, there is an extra conserved quantity called the

Laplace-Runge-Lenz (LRL) vector A:

A = p× L−mkr̂, (2.1)

where k is the coupling constant. The LRL vector A always lies in the plane of motion

and points toward the perihelion, the point of closest approach in the orbit. Noether’s

theorem tells us that there is a conserved current for every continuous symmetry, and

vice versa. Thus, we should suspect that Kepler problems possess a higher group of

symmetries. Given this vector, I will motivate the presence of an extra symmetry by

two independent but related lines of reasoning, one algebraic and the other geometric.

The discussion in this section is kept at a heuristic level and is meant to give an overview

of the topics that will be explored further.

4



A Higher Symmetry 5

2.1.1 Algebraic Motivation

The quantities H, L, and A contribute a total of 7 conserved scalars (vector quan-

tities each contribute 3 scalar components). However, two relations, A · L = 0 and

A2 = m2k2 +2mHL2, impose two constraints and yields 5 independent conserved quan-

tities. A d-dimensional Hamiltonian system possesses a maximum of 2d − 1 integrals

of motion. Since the Kepler problem possesses the maximum number of integrals of

motion, we call it maximally superintegrable [3]. Motion for a maximally superinte-

grable classical Hamiltonian system follows a 1-dimensional closed curve with respect to

time evolution in phase space. The quantum mechanical analogues of such systems are

also fully quantized using just commutation relations, as will be shown in Section 2.2.

Given such quantities, the algebraic structure of the Kepler problem can be made

explicit through the use of Poisson brackets. The Poisson bracket is defined as

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

with canonical coordinates (qi, pi) on phase space and functions f(qi, pi, t) and g(qi, pi, t)

[4]. The Poisson bracket operation, in its essence, yields the infinitesimal transformation

of f(qi, pi, t) with respect to parameter s associated with g(qi, pi, t), and vice versa. Thus,

f and g are called infinitesimal generators of the Lie algebra. As we will see, Poisson

brackets provide a nice bridge between classical and quantum mechanics through its

interpretation as quantum mechanical commutators under canonical quantization.

Let us first write the angular momentum and LRL vector in component form:

Lk = εijkripj , Āk =
Ak
p0

=
1

p0

(
εijkpiLj −mk

rk
r

)
, (2.2)

where Āk is the LRL vector rescaled by p0 =
√

2m|H| and where I have used the Einstein

summation convention. I will continue to use this convention unless stated otherwise.

With H held fixed, their Poisson bracket relations yield the following [5]:

{Li, Lj} = εijkLk, {Āi, Lj} = εijkĀk, {Āi, Āj} = +εijkLk (2.3)

for H < 0 (bound state) and

{Li, Lj} = εijkLk, {Āi, Lj} = εijkĀk, {Āi, Āj} = −εijkLk (2.4)

for H > 0 (scattering state). Thus, the components of L and Ā are closed under the

Poisson bracket operation. We note that Eq. (2.3), with a positive sign in the last

relation, forms a Lie algebra isomorphic to that of SO(4), the group of rotations in R4.

Also, Eq. (2.4), with a negative sign in the last relation, forms a Lie algebra isomorphic
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to that of the Lorentz group SO(1, 3), which includes both 3-rotations and 3-boosts in

R1,3.1 Thus, the H < 0 (bound state) problem is symmetric under the group action of

SO(4) and the H > 0 (scattering state) problem is symmetric under the group action

of SO(1, 3). We will not discuss the H = 0 case, where the rescaling of the LRL vector

with p0 becomes problematic. It is also worthwhile to look at the algebra of the linear

combinations of L and Ā [5]:

M =
1

2
(L + Ā), N =

1

2
(L− Ā),

{Mi,Mj} = εijkMk, {Ni, Nj} = εijkNk, {Mi, Nj} = 0 (2.5)

The components of M and N are independently closed under the Poisson bracket op-

eration, and we verify that the components taken together form a Lie algebra isomor-

phic to that of SO(3) × SO(3) ' SO(4). We can also find the Casimir elements,

M2 = M2
1 +M2

2 +M2
3 and N2 = N2

1 +N2
2 +N2

3 :

M2 = N2 = −1

4

mk2

2H
. (2.6)

The quantum analogues of M and N will be useful in the algebraic method of quanti-

zation presented in Section 1.2. As expected, taking the Poisson brackets of Li, Āi, Mi,

and Ni with H give zeros:

{Li, H} = 0, {Āi, H} = 0, {Mi, H} = 0, {Ni, H} = 0.

2.1.2 Geometric Motivation

Now that we have found the higher symmetry groups for the Kepler problem, we ask,

what is the natural geometry on which the Kepler problem takes place that remains in-

variant under the action of the symmetry groups? Indeed, the invariance of the problem

under the higher dimensional symmetry groups is not immediately obvious. The clue

to identifying such a geometric surface comes from considering the momentum space—

rather than the familiar position space—of the problem. To do this, we use a cute trick

involving the LRL vector A [6]. First, we rearrange Eq. (2.1):

p× L−A = mkr̂.

Taking the dot product with itself and even-permuting the triple product, we get

p2L2 +A2 − L · (A× p) = m2k2.

1For connectedness, we take the conditions proper for SO(4) and proper and orthochronous for
SO(1, 3) to be implicit throughout our discussion.
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Figure 2.1: Momentum space curves of the bound Kepler problem

The angular momentum L is conserved and we are free to pick a plane on which the

motion is constrained. We pick A to lie on the x-axis and L to lie on the z-axis:

(p2
x + p2

y)L
2 +A2 − 2ALpy = m2k2.

Dividing through by L2 and factoring, we have

p2
x +

(
py −

A

L

)2
=
(mk
L

)2
, (2.7)

an equation for a circle with radius = mk/L centered at (px, py) = (0, A/L). Since all

of the coupling constant k’s that appear in Eq. (2.7) are squared, the momentum space

curves are circles in both k < 0 (attractive) and k > 0 (repulsive) Kepler problems.

Therefore, all particle paths in the position space of the Kepler problem, which we know

to be conic sections, trace out circles (or parts of circles) in momentum space! A series

of equal energy curves with varying L for various signs of H and k is shown in Fig. 2.1.

This is neat, but what is its connection to geometry? To see the connection, let us

first consider the H < 0 (bound state) Kepler problem. In this problem, all equal energy

curves in momentum space share two common points on the px-axis, as seen in Fig. 2.1.

Given the radius and the center of the circle on the py-axis, we can find the distance

d from the origin to one of the common points on the px-axis using the Pythagorean

theorem:

d2 =
(mk
L

)2
−
(A
L

)2
= −2mH,

where we used A2 = m2k2 + 2mHL2. Notice that d is just p0 =
√

2m|H| defined in the

previous subsection for H < 0. So all circles at fixed H share two common points at
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Figure 2.2: Stereographic projection

px = ±p0.

We recall the notion of stereographic projection typically encountered in a first

course in complex analysis, where one compactifies the complex plane to a Riemann

sphere by mapping points on the plane to the sphere via a line through the North Pole

(Fig. 2.2). The stereographic projection is a smooth, conformal (angle-preserving),

and one-to-one map that maps circles on the plane to circles on the sphere, and vice

versa. Here, we perform this projection in real space. If we choose the radius of the

sphere S2 to be p0, all of the circular paths in the momentum plane R2 with fixed energy

p0 =
√

2m|H| will be mapped to circles in S2 that contain the antipodal points px = ±p0

on the sphere. Since circles on S2 that touch the antipodes must be great circles, all

particle paths on the momentum plane R2 will be mapped to great circles, which are

geodesics on S2 [7]. In our derivation of Eq. (2.7), we arbitrarily chose a momentum

plane R2 on which the motion is constrained. In fact, we are allowed to consider the

more general case of the 3D momentum space R3 and map this to the 3-sphere S3,

also on which the geodesics are great circles. Switching to normalized dimensionless

projective coordinates (X0, X1, X2, X3), S3 can be expressed

X2
0 +X2

1 +X2
2 +X2

3 = 1. (2.8)

With this generalization, we have a manifold on which SO(4) symmetry of the Kepler

problem acts in a natural manner. In other words, 4-rotations of S3 generate equal

energy curves in the momentum space of the bound state Kepler problem.

A similar procedure can be carried out for the H > 0 (scattering state) Kepler prob-

lem. The natural manifold in this regime turns out to be the 3-hyperboloid H3, which,

in normalized dimensionless coordinates (X0, X1, X2, X3) as above, can be expressed

X2
0 −X2

1 −X2
2 −X2

3 = 1. (2.9)
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Recalling that H3 is also the invariant manifold under Lorentz transformations in special

relativity, we verify that the natural manifold under the group action of SO(1, 3) in the

H > 0 Kepler problem is indeed H3. Thus, 3-rotations and 3-boosts of H3 generate

equal energy curves in the momentum space of the scattering state Kepler problem.

All fine points aside, the remarkable insight gained through the geometric perspec-

tive is the following: the extra symmetry in the Kepler problem allows us to find a more

natural manifold on which the motion takes place, and the symmetric transformations of

such a manifold allow us to generate all equal energy curves in momentum space. Since

this extra symmetry is only fully evident upon consideration of the dynamics—the mo-

mentum space—of the problem, we say that the Kepler problem possesses a dynamical

symmetry. The classical geometric perspective illustrated in this section will be made

more rigorous and explicit in Chapter 2.

It turns out that the identification of a natural manifold for the Kepler problem

is even more powerful in connection to quantum mechanics. The manifold allows for a

global quantization scheme of the Kepler problem, which will be worked out in Section

1.3. But first, we show that, as a maximally superintegrable system, the energy eigen-

values of the hydrogen atom can be obtained simply by considering the algebra of the

problem.

2.2 Pauli Quantization

Algebraic approaches often provide a more elegant and insightful view into unearthing

the essence of physical systems than do their analytic counterparts. For example, the

algebraic method for quantum harmonic oscillators involves a clever construction of

ladder operators that yield the equally spaced energy levels, whereas the analytic method

is generally applicable, but feels rather brute force and provides little insight. One can

also take an algebraic approach to canonically quantize the hydrogen atom, a H < 0

(bound state) Kepler problem. Pauli used this approach to calculate the hydrogen atom

energy levels in his 1926 paper, a year before the discovery of the Schrodinger equation

[1, 2, 8].

To find a quantum mechanical analogue of the algebraic relations of the classical

H < 0 Kepler problem, we must first learn about canonical quantization [2, 9]. Canonical

quantization is motivated by the remarkable similarity between the Poisson bracket form

of the classical Hamilton’s equations of motion and the equations of motion for operators

in the Heisenberg picture, where the operators, rather than the states, exhibit dynamics.

A function f(qi, pi) on phase space without explicit time-dependence satisfies

df

dt
= {f,H} (2.10)
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in Hamiltonian mechanics, while an operator f̂(q̂i, p̂i) acting on the Hilbert space satisfies

df̂

dt
=

1

i
[f̂ , Ĥ] (2.11)

in the Heisenberg picture, if we define the commutator [·, ·] of two operators f̂ and ĝ as

[f̂ , ĝ] = f̂ ĝ− ĝf̂ . The similarities in Eq. (2.10) and Eq. (2.11) suggest the following: For

every classical observable f(qi, pi) on phase space of a canonical Hamiltonian system,

we can associate a linear Hermitian operator f̂(q̂i, p̂i) acting on the Hilbert space. Such

a map Q : f(qi, pi) → f̂(q̂i, p̂i) is called quantization, and Q preserves the canonical

structure. In canonical quantization, we typically choose

qi
Q−→ q̂i = qi, pi

Q−→ p̂i =
1

i

∂

∂qi
.

After quantization Q of functions into operators, we still see that Eq. (2.10) differs from

Eq. (2.11) by the Poisson bracket. Noting the correspondence

{·, ·} ↔ 1

i
[·, ·] (2.12)

between the Poisson bracket and the commutator, we canonically quantize Eq. (2.10)

into Eq. (2.11). Although canonical quantization only works in general for algebra of

the polynomials that are quadratic under the Poisson bracket, the Lie algebra of the

hydrogen atom meets this criteria.

Let us now canonically quantize the classical infinitesimal generators of so(4), the

Lie algebra of the hydrogen atom, which we have written in Eq. (2.2) [1, 2]. Quantization

Q of the angular momentum components Lk is simply

Lk
Q−→ L̂k = εijkrip̂j . (2.13)

We need to, however, symmetrize the LRL operators Âk obtained from the quantization

Q of rescaled LRL vector components Āk in order to make them Hermitian:

Āk
Q−→ Âk =

√
Ĥ−1

2m

[
1

2
εijk(p̂iL̂j − L̂ip̂j)−mk

rk
r

]
, (2.14)

where Ĥ = p̂2

2m + k
r is the Hamiltonian operator. To avoid excessive notation, we will

take Âk as the quantized Hermitian operator of the rescaled LRL components Āk rather

than of the regular LRL components Ak. Following the correspondence in Eq. (2.12),

we obtain the commutation relations of the operators from Poisson bracket relations of
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the observables in Eq. (2.3):

[L̂i, L̂j ] = iεijkL̂k, [Âi, L̂j ] = iεijkÂk, [Âi, Âj ] = iεijkL̂k. (2.15)

A direct calculation also leads to Eq. (2.15), but it is rather tedious. As in the classical

case, L̂i and Âi generate the Lie algebra of SO(4). Likewise, Eq. (2.5) becomes

M̂i =
1

2
(L̂i + Âi), N̂i =

1

2
(L̂i − Âi),

[M̂i, M̂j ] = iεijkM̂k, [N̂i, N̂j ] = iεijkN̂k, [M̂i, N̂j ] = 0. (2.16)

Also as before, M̂i and N̂i together generate the Lie algebra of SO(3)×SO(3) ' SO(4).

The Casimir operators, M̂2 = M̂2
1 + M̂2

2 + M̂2
3 and N̂2 = N̂2

1 + N̂2
2 + N̂2

3 , give

M̂2 = N̂2 = −1

4

(
mk2

2
Ĥ−1 + I

)
, (2.17)

where I is the identity. Eq. (2.17) differs from the classical Casimir element in Eq.

(2.6) by just −1
4 , and this difference comes from symmetrizing the LRL operator Âi.

The commutation of L̂i, Âi, M̂i, and N̂i with the Hamiltonian Ĥ give zeros, as in the

classical case:

[L̂i, Ĥ] = 0, [Āi, Ĥ] = 0, [M̂i, Ĥ] = 0, [N̂i, Ĥ] = 0.

Let us now consider just the Lie algebras and note that so(3) = su(2), the algebra

of Pauli matrices, because multiple Lie groups can share the same Lie algebra. Then

M̂i and N̂i each generates the algebra su(2). Each irreducible representation of su(2) is

specified by a half-integer j, where j = 0, 1
2 , 1,

3
2 , · · · . From the study of spins in quantum

mechanics, we know that the Casimir operators M̂2 and N̂2, whose components M̂i and

N̂i each generate su(2), have eigenvalues j(j+1). Thus, for eigenvalue H of Ĥ, it follows

that

M̂2 = N̂2 = j(j + 1) = −1

4

(
mk2

2H
+ 1

)
.

Rearranging,

H = − mk2

2(2j + 1)2
.

Let us define the principal quantum number n = 2j+1, which ranges over n = 1, 2, 3, · · ·
for j = 0, 1

2 , 1, · · · . Then, the energy levels of the hydrogen atom is

H = −mk
2

2n2
= − mee

4

2(4πε0)2~2

1

n2
. (2.18)
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The ~2 term was inserted into the last expression to match the form that is familiar to

readers. Eq. (2.18) exhibits the characteristic 1/n2 dependence.

Now, why doesn’t the energy level of hydrogen depend on other quantum numbers,

such as l and m? To see why, let us observe what we get when we take the number of

m for a given l and sum over the possible values of l for a given n. The number of m

for a given l is 2l + 1, and the possible values of l for a given n range is from 0 to 2j:

2j∑
l=0

(2l + 1) = (2j + 1)2 = n2.

The n2 factor in the hydrogen energy level simply comes from considering the degenera-

cies of m and l for a given n! Thus, the symmetries of the hydrogen atom give rise to

degeneracies, which in turn results in the n2 factor in the energy level [10]. This fact is

indeed what allows us to calculate the energies purely from algebraic considerations.

As a last note, the reader may be worried about the inverse of Hamiltonian operator

Ĥ−1 appearing in Eq. (2.14) and Eq. (2.17). However, it will be evident from our

discussion of classical regularization in Chapter 2 that H−1, rather than H, is the more

natural quantity to consider from the perspective of geometry and group theory.

2.3 Fock Quantization

The merit of the algebraic method in Pauli Quantization lies in its elegance, but the

intuitive picture of the dynamical symmetry in the quantum mechanical scheme remains

yet elusive. In the classical scheme, we have identified the natural manifolds S3 and H3

on which the momentum space curves of bound and scattering Kepler problems are

geodesics. We saw in Pauli Quantization that the quantum mechanical Kepler problem

preserves the group of symmetries seen in the classical Kepler problem. Thus, we can

map the quantum mechanical problem onto the manifolds S3 and H3 to obtain the

eigenstates and energy eigenvalues. The geometric insight gained through this global

treatment of the Kepler problem by Fock in 1935 will be of essence in our subsequent

discussions [2, 11].

Let us consider the momentum space Schrodinger equation of the Kepler problem

in R3, which we obtain via a Fourier transform of the position space equation:

( p2

2m
− E

)
φ(p) =

k

2π2

∫
R3

φ(p′)

|p− p′|2
d3p′.
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In general, Fock Quantization can be performed in arbitrary dimensions Rf where f ≥ 2.

We will proceed with the f -dimensional momentum space Schrdinger equation

( p2

2m
− E

)
φ(p) =

k

πΩf

∫
Rf

φ(p′)

|p− p′|f−1
dfp′,

where Ωf = 2π(f+1)/2

Γ[(f+1)/2] is the area of the unit f -sphere Sf . Substituting in Ωf and

rearranging, we get

(
p2 + p2

0

)
φ(p) =

mkΓ
(f−1

2

)
π
f+1
2

∫
Rf

φ(p′)

|p− p′|f−1
dfp′, (2.19)

where p2
0 = −2mH. Let us take dimensionless Cartesian coordinates xi = pi/p0 on the

momentum space Rf . The stereographic projection from Rf with coordinates xi onto a

unit f -sphere Sf embedded in Rf+1 with coordinates (Xi, Xf+1), where i = 1, 2, · · · , f ,

is given by

Xi =
2xi

x2 + 1
=

2pi
p2 + p2

0

,

Xf+1 =
x2 − 1

x2 + 1
=

p2 − p2
0

p2 + p2
0

,

(2.20)

where 〈X,X〉 = 1. Since metric tensor of Sf is given by gij = ( 2
x2+1

)2δij due to the first

expression in Eq. (2.20), the surface element of Sf is

dΩf =

[
2

x2 + 1

]f
dfx =

[
2p0

p2 + p2
0

]f
dfp, (2.21)

where in the last step we substituted in xi = pi/p0. To obtain an expression for the

denominator |p− p′|f−1 inside the integral in terms of |X −X ′|, we calculate

|X −X ′|2 = 〈X,X〉+ 〈X ′, X ′〉 − 2〈X,X ′〉

= 2− 2
4〈x, x′〉+ (x2 − 1)(x′2 − 1)

(x2 + 1)(x′2 + 1)

=
4|x− x′|2

(x2 + 1)(x′2 + 1)

=
4p2

0

(p2 + p2
0)(p′2 + p2

0)
|p− p′|2,

where in the second step we used Eq. (2.20). Hence,

1

|X −X ′|f−1
=

[
(p2 + p2

0)(p′2 + p2
0)

4p2
0

] f−1
2 1

|p− p′|f−1
. (2.22)
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Finally, we can remove all factors of p and p′ in Eq. (2.19) if we define an appropriately

rescaled wavefunction on Sf :

Φ(X) =

[
p2 + p2

0

2p2
0

] f+1
2

φ(p). (2.23)

Plugging Eq. (2.21)-(2.23) into Eq. (2.19), we get

Γ
(f−1

2

)
2π

f+1
2

∫
Sf

Φ(X ′)

|X −X ′|f−1
dΩ′f =

p0

mk
Φ(X). (2.24)

We have mapped Rf to Sf by changing to stereographic coordinates (Xi, Xf+1), so we

are now integrating over the surface of Sf . The change of coordinates makes it apparent

that the problem is symmetric under SO(f + 1). It will be useful to define the operator

L̂−1Φ(X) =
Γ
(f−1

2

)
2π

f+1
2

∫
Sf

Φ(X ′)

|X −X ′|f−1
dΩ′f , (2.25)

such that we see from

L̂−1Φ(X) =
p0

mk
Φ(X) (2.26)

that Φ(X) is the eigenstate and mk/p0 is the eigenvalue of L̂.

The convolution integral in Eq. (2.24) can also be obtained purely mathematically

by considering homogeneous harmonic polynomials. A homogeneous harmonic polyno-

mial hλ(X) of degree λ in Rf+1 satisfies the following conditions: (1) harmonicity

∆Rf+1hλ(X) = 0 (2.27)

and (2) homogeneity

hλ(X) = |X|λYλ
(
X
|X|
)
, (2.28)

where Yλ
(
X
|X|
)
, called spherical harmonics, are homogeneous harmonic polynomials

hλ(X) restricted to Sf . We recall that the spherical harmonic functions, generalized

to Rf+1, form a basis for the Hilbert space of square-integrable functions L2 on Sf .

Therefore, any function on Sf may be expressed as a linear combination of the spherical

harmonics functions Yλ. If we can obtain the convolution integral in Eq. (2.24) such

that Yλ is the eigenstate of L̂, we can compare the resulting eigenvalue to that of Eq.

(2.26) to obtain the hydrogen energy levels.

To do this, let us first note that the kernel 1
|X−X′|f−1 in the integral of Eq. (2.24)

is the Green’s function of the Laplacian ∆Rf+1 in Rf+1:

∆Rf+1

1

|X −X ′|f−1
= −(f − 1)Ωfδ

f+1(X −X ′). (2.29)
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Figure 2.3: “Dented” sphere of integration

The kernel 1
|X−X′|f−1 is harmonic everywhere except at X ′ = X. Then, let us consider

the surface of integration Sε such that

Sε ≡ {X ′ : |X ′|2 = 1, |X −X ′| > ε} ∪ {X ′ : |X ′|2 ≤ 1, |X −X ′| = ε},

where X is a fixed point on Sf and X ′ is a variable. Sε is essentially a “dented” Sf

where X is placed outside the surface of integration Sε via a shell centered at X with

radius ε (Fig. 2.3). Green’s second identity gives us

∫
V (Sε)

[
hλ(X ′)∆

1

|X −X ′|f−1
− 1

|X −X ′|f−1
∆hλ(X ′)

]
dV ′f

=

∫
Sε

[
hλ(X ′)

d

dn

1

|X −X ′|f−1
− 1

|X −X ′|f−1

d

dn
hλ(X ′)

]
dΩ′f ,

where V (Sε) denotes the volume enclosed by Sε, n is the outward normal to Sε, and

∆ ≡ ∆Rf+1 . Since hλ(X ′) is harmonic and since Sε does not contain X, Eq. (2.27) and

Eq. (2.29) tell us that the integral over V (Sε) disappears. Then, we have

0 =

∫
Sε

[
hλ(X ′)

d

dn

1

|X −X ′|f−1
− 1

|X −X ′|f−1

d

dn
hλ(X ′)

]
dΩ′f . (2.30)

The integral splits into two parts based on the region of integration. Let us treat each

separately. The first part is over the shell centered at X with radius ε. If we take ε→ 0,

the shell becomes a hemispherical shell as Sf is locally flat. To solve the integral, we

can complete the shell to a spherical shell around X and only take half of the result.

Using Green’s second identity over this region and halving, we get f−1
2 ΩfYλ(X) since

hλ = Yλ on Sf . The negative sign from Eq. (2.29) disappears if we recall that n is the

inward normal in this region. The second part tends smoothly to an integral over Sf as
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ε→ 0. Due to homogeneity in Eq. (2.28),

d

dn
hλ(X ′)

∣∣∣
|X′|=1

= λYλ(X ′),

and on the Sf where |X| = |X ′| = 1,

d

dn

1

|X −X ′|f−1

∣∣∣∣∣
|X|=|X′|=1

= −f − 1

2

1

|X −X ′|f−1

∣∣∣∣∣
|X|=|X′|=1

. (2.31)

Eq. (2.31) is intuitive if we recall the following special property of the inverse-square

law for f = 3 (in R3): the density of field lines for an inverse-square force emanating

from a point source also happens to decrease as inverse-square. Similarly in Rf , the

density decreases as 1/rf−1. For a rigorous derivation which includes the f−1
2 factor in

the general case f ≥ 2, refer to pg. 85 of Cordani [2]. Inserting the results into Eq.

(2.30), we get

Γ
(f−1

2

)
2π

f+1
2

∫
Sf

Yλ(X ′)

|X −X ′|f−1
dΩ′f =

2

f − 1 + 2λ
Yλ(X). (2.32)

Noticing that the left hand side of Eq. (2.32) can be expressed in terms of L̂,

L̂−1Yλ(X) =
2

f − 1 + 2λ
Yλ(X), λ = 0, 1, 2, · · · . (2.33)

Comparing and rearranging the eigenvalues in Eq. (2.26) and Eq. (2.33), we have for

the general case f ≥ 2

H = − 2mk2

[2λ+ f − 1]2
.

For the physical case f = 3, we have

H = − mk2

2(λ+ 1)2
= −mk

2

2n2
= − mee

4

2(4πε0)2~2

1

n2
, (2.34)

where we identified λ = 2j and we inserted the term ~2 in the last expression. Again,

we retrieved the correct energy levels for the hydrogen atom.

As in the previous section, let us look at the degeneracies that give rise to the n2

term in the energy levels. An arbitrary homogeneous polynomial in f + 1 variables (in

Rf+1) of degree λ depends on
(
λ+f
λ

)
constants. Since the harmonicity condition in Eq.

(2.27) gives
(
λ+f−2
λ−2

)
constants, the number of independent spherical harmonics Yλ with

the same value of λ is(
λ+ f

λ

)
−
(
λ+ f − 2

λ− 2

)
=

(λ+ f − 2)!(2λ+ f − 1)

(f − 1)!λ!
.



A Higher Symmetry 17

For f = 3, this reduces to (λ + 1)2 = n2. This assures us that we have found all the

solutions of the eigenvalue problem on the sphere [10].

A similar procedure can be conducted withH > 0 (scattering) Kepler problems [12].

One maps the wavefunction to the f -hyperboloid Hf via an extended stereographic pro-

jection. The upper and lower hyperboloids, Hf
+ and Hf

−, describe the k > 0 (repulsive)

and k < 0 (attractive) problem, respectively. The problem is then cast in a convolution

integral equation similar to Eq. (2.24) that is symmetric under SO(1, f). In obtaining

the same integral using homogeneous harmonic polynomials, one uses hypergeometric

functions, which form a basis for the Hilbert space of square-integrable functions L2

on Hf , in place of spherical harmonics. Although of the same form as in the bound

case, the energy eigenvalues for the scattering problem involve a complex λ, which is an

analytic continuation of the λ in Eq. (2.34). Indeed, one expects this result, since the

energy levels in the scattering problem are continuous.

Lastly, we would like to note the classical-quantum correspondence of the Kepler

problem. In this chapter, we saw that the classical and quantum Kepler problems share

the same natural manifold. On such a manifold, classical particle paths are geodesics

and quantum wavefunctions are spherical harmonics. Therefore, the spherical harmonics

must give rise to the geodesic flow on the manifold at length scales greater than the

atomic. This can be done using a process called geometric quantization. However,

this thesis will not cover geometric quantization, as the method is rather involved and

will detract from the thesis. Interested readers can look to Ch. 9 of Cordani [2] for a

thorough discussion.



Chapter 3

Classical Regularization

In physics, regularization is a method of dealing with divergent expressions. In quan-

tum field theory, one does this in one of several ways, for example, by introducing a

regulator ε to avoid infinities while carrying out calculations after which one takes the

limit as ε → 0. In the Kepler problem, one encounters collision orbits, where the ellip-

tical orbit degenerates into a straight line and the motion reaches the origin at a finite

time t. For such orbits, the potential term in the Hamiltonian blows up, resulting in a

singularity in the phase space and an incomplete space of possible orbits. In this chapter,

we will consider the Moser method, where we embed the incomplete space of orbits into

a complete one in order to remove the singularity due to collision orbits in the phase

space. Alternatively, we also consider the Kustaanheimo-Stiefel map, where we show

the equivalence of the 3d Kepler problem to the 4d harmonic oscillator via a canonical

transformation. This turns a system with a singularity in phase space into an equivalent

regularized system. The methods presented in this chapter go beyond regularization;

they use the symmetry properties of the Kepler problem in order to recast the problem

in a more natural light. It is assumed that readers are familiar with basics of differential

geometry and Hamiltonian mechanics.1

3.1 Moser Method

In Section 2.1, we showed that the momentum space curves of the Kepler problem are

geodesics on the manifolds S3 or H3. In the Moser method [1, 7], we will start from the

(co-)geodesic flow on S3 andH3 and obtain the HamiltonianK on the phase space, which

is a reparametrization of the familiar Kepler Hamiltonian H. It turns out that switching

to the parameter s of the motion given by K, which replaces the time parameter t of H,

removes the singularity of the collision orbits. In the process, we obtain the expressions

1In particular, we use the symplectic manifold approach to Hamiltonian mechanics.

18
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for the motion on the phase space, rather than simply the momentum space, of the

Kepler problem by projecting the phase space of a free particle on S3 and H3.

If we are to consider the phase space of a particle on S3 and H3, it is helpful to

cast the problem in the language of manifolds [4, 13]. In a d-dimensional Hamiltonian

system, the motion at any point in time is given by its position, which is specified by

the canonical coordinates (qi, pi) on the symplectic manifold. Symplectic manifold is

a 2d-dimensional phase space with a symplectic 2-form ω = dqi ∧ dpi. The symplectic

2-form ω provides an identification between 1-forms and vector fields. For a function f

and its corresponding vector field ξf = {·, f} = ∂f
∂pi

∂
∂qi
− ∂f

∂qi
∂
∂pi

, the following relation

holds:

df = −ω(ξf , ·). (3.1)

If we are given the d-dimensional configuration manifold M , we can construct the phase

manifold by considering the cotangent bundle T ∗M to M . The cotangent bundle T ∗M

can be constructed by considering the cotangent space T ∗mM at a point m on M , then

taking the union of T ∗mM for all m ∈ M . For example, the motion of a 1-dimensional

rigid pendulum is restricted to the circle M = S1 and, at each point m of the circle,

the pendulum can have any real value of momentum T ∗mM = R1. Thus, the cotangent

bundle of the system is given by the cylinder T ∗M = S1 × R1. In fact, the cotangent

bundle T ∗M is the phase space of a particle whose motion occurs on M , and T ∗M is a

symplectic manifold with a symplectic 2-form ω.

Geodesics on the configuration manifold M are paths traced by free particles on M .

Thus, the (co-)geodesic flow on M is described by the Hamilton’s equations of motion

given by the free Hamiltonian on T ∗M

G(qi, pi) =
1

2
|p|2, (3.2)

where |p|2 =
∑

i p
2
i and pi ∈ T ∗M is the conjugate momenta. Thus, geodesics are, in

more precise terms, projections of curves induced by the geodesic flow onto the con-

figurational manifold M . The canonical 1-form is defined on the cotangent space

T ∗M and is given by θ = pidq
i. The canonical 1-form θ is preserved under canonical

transformations, and the exterior derivative of θ gives the symplectic 2-form ω = dθ.

We will treat the geodesics flow on the manifolds for the bound state (E < 0) and

scattering state (E > 0) problems separately. The concepts introduced in the Moser

method will serve as an important prelude to Chapter 5, where we transform between

the energy regimes by taking different cross-sections of a greater manifold.
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3.1.1 Bound State

In the bound state (E < 0) problem, we consider the configuration manifold S3 embed-

ded in R4 [1, 7]. Let X = (X0, ~X) ∈ R4 be the configuration coordinates. Though X

are physically projective momentum coordinates, we first take them to be configuration

coordinates to obtain the cotangent bundle. We will perform a canonical exchange later.

Then S3 consists of all unit vectors |X|2 = 1, where |X|2 = X ·X = X2
0 + | ~X|2. Taking

S3
N = S3 − {N} where N = (1,~0) is the north pole of S3, we see that the stereographic

projection f : S3
N → R3 from N gives

~x =
~X

1−X0
(3.3)

for the coordinates ~x ∈ R3. The inverse map f−1 : R3 → S3
N is given by

X0 =
|~x|2 − 1

|~x|2 + 1
, (3.4)

~X =
2~x

|~x|2 + 1
. (3.5)

The stereographic projection thus provides an isomorphism between S3
N and R3. We

would like to find such a map between the cotangent bundles T ∗S3
N and T ∗R3. We

embed the cotangent bundle T ∗S3
N in T ∗R4 and identify T ∗R4 = R4⊕R4. Let us define

Y = (Y0, ~Y ) ∈ R4 as the conjugate momentum of X ∈ R4. Similarly, we identify that

T ∗R3 = R3 ⊕ R3 and define ~y ∈ R3 as the conjugate momentum of ~x. We now impose

the constraints

|X|2 = X2
0 + | ~X|2 = 1, (3.6)

X · Y = X0Y0 + ~X · ~Y = 0, (3.7)

1

2
d|X|2 = X0dX0 + ~X · ~dX = 0. (3.8)

In addition, we would like to have the canonical 1-forms on T ∗S3
N and T ∗R3 be equal to

each other (i.e. coordinates are related by a canonical transformation):

Y · dX = ~y · ~dx. (3.9)

Let us now determine the expression for ~y as a function of X and Y . We claim that

~y = (1−X0)~Y + Y0
~X. (3.10)
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We can check Eq. (3.9) by showing that it satisfies Eq. (3.8). First, the exterior

derivative of Eq. (3.3) is

~dx =
1

1−X0

~dX +
dX0

(1−X0)2
~X.

Taking the dot product with Eq. (3.9) gives

~y · ~dx = ~Y · ~dX + ( ~X · ~Y )
dX0

1−X0
+ Y0

~X · ~dX
1−X0

+ ( ~X · ~X)
Y0dX0

(1−X0)2

= ~Y · ~dX −X0Y0
dX0

1−X0
−X0Y0

dX0

1−X0
+ (1 +X0)Y0

dX0

1−X0

= ~Y · ~dX + (1−X0)Y0
dX0

1−X0

= Y0dX0 + ~Y · ~dX

= Y · dX, X

where we used Eq. (3.6), (3.7), and (3.8) in the second step. Let us now determine the

expression for Y as a function of ~x and ~y. Consider the following expression gives us Y0:

~x · ~y = (1−X0)
~X · ~Y

(1−X0)
+ Y0

~X · ~X
1−X0

= −X0Y0 + Y0(1 +X0)

= Y0,

where we used Eq. (3.6) and (3.7) in the second step. Thus,

Y0 = ~x · ~y. (3.11)

Now we can solve for ~Y . Solving for ~Y from Eq. (3.10) and inserting Eq. (3.11), we get

~Y =
1

1−X0

[
~y − (~x · ~y) ~X

]
.

We can use Eq. (3.3) and the result 1
1−X0

= |~x|2+1
2 from Eq. (3.4) to get

~Y =
1

2
(|~x|2 + 1)~y − (~x · ~y)~x. (3.12)

Thus, we found the extended stereographic map and its inverse. Note that

|Y |2 = Y 2
0 + |~Y |2 =

[1

2

(
|~x|2 + 1)

]2
|~y|2.
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The (co-)geodesic flow on S3 is given by the free Hamiltonian F on T ∗S3, which we map

to T ∗R3 via stereographic projection:

F (~x, ~y) =
1

2
|X|2|Y |2 =

1

8

(
|~x|2 + 1

)2|~y|2, (3.13)

where upon inserting |X|2 = 1 for the middle expression, we retrieve the familiar free

Hamiltonian F (X,Y ) = 1
2 |Y |

2 from Eq. (3.2). It is possible to verify that the Hamil-

tonian F satisfies the Hamilton’s equations for the canonical coordinates (X,Y ) and

(~x, ~y).

Suppose we replace F by a new Hamiltonian J = J(F ). Then,

d(J(F )) = J ′(F ) dF.

Using Eq. (3.1) and canceling the symplectic 2-form ω, we write

ξJ(F ) = J ′(F ) ξF ,

where ξJ(F ) and ξF are Hamiltonian vector fields. The above relation implies that, for

constant F and J ′(F ) 6= 0, the vector fields possess identical trajectories with velocities

only differing by a constant term J ′(F ). It is most convenient to choose J(F ) such

that J ′(F ) = 1. Let us choose J(F ) =
√

2F − 1, so that J ′(F ) =
√

1
2F . It follows

that J ′(F ) = 1 for the submanifold of T ∗R3 where F = 1
2 . Then, we get for the new

Hamiltonian J = J(F )

J(~x, ~y) =
1

2

(
|~x|2 + 1

)
|~y| − 1. (3.14)

The submanifold F = 1
2 is then identical to the submanifold J = 0, and the two vector

fields ξF and ξJ coincide on the submanifolds. We can also verify that Hamiltonian J

also satisfies Hamilton’s equations for the canonical coordinates (~x, ~y). We now observe

that

J = |~y|
(
H +

1

2

)
, (3.15)

where H(~x, ~y) = |~x|2
2 −

1
|~y| and |~y| 6= 0. If we identify ~p = −~x and ~q = ~y, we recover

H(~q, ~p) =
|~p|2

2
− 1

|~q|
, (3.16)

the Kepler Hamiltonian. The identification above is intuitive if we recall that in Chapter

1 we mapped the momentum space to the 3-sphere. On the submanifold H = −1
2

identical to the submanifold J = 0, we can take the exterior derivative of Eq. (3.15) to

get

dJ = |~y| d
(
H +

1

2

)
,
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so

ξJ = |~y| ξH .

From the definition of the Hamiltonian vector field ξH , we have ξH = {·, H} = d
dt . The

time parameter t is the independent variable corresponding to the Hamiltonian H. There

also exists a parameter s corresponding to the Hamiltonian J . Then, t and s are related

by dt/ds = |~y|. We know that H satisfies the Hamilton’s equation for the canonical

coordinates (~q, ~p) with the independent variable t, and that J satisfies the same with

coordinates (~x, ~y) and variable s. Therefore, changing the independent variables from

t to s amounts to changing the Hamiltonian from H to J . While the vector field ξH

contains a singularity at |~y| = 0 in H, the vector field ξJ is free of singularities. Since

H = −1
2 is a constant, |~y| = 0 is equivalent to |~x| = ∞, and the singularity of ξH is at

the north pole N = (1,~0) when interpreted on S3. Thus, switching from t to s restores

N on S3 and compactifies the submanifold H = −1
2 . The geodesics that pass through

N correspond to collision orbits, where the motion reaches the origin at a finite time t.

Here, we regularized the problem by switching to “fake” time s, where the motion only

reaches the origin at infinite s.

By the way, we have limited our discussion so far to the equivalence of the geodesic

flow on S3 and the bound Kepler problem only for the submanifold H = −1
2 [2]. We can

generalize this to any negative energy submanifold H = − 1
2λ if we rescale our variables

~q 7→ λ2~q, ~p 7→ ~p

λ
, t 7→ λ3t.

We can explicitly find the phase space orbits generated by the Moser method by

considering a geodesic on the cross section of S3 at X3 = 0 [1]. The cross section is

taken without loss of generality, since for a given geodesic, we can always rotate S3 such

that the geodesic lies on X3 = 0. The most general such circle is given by

X0 = sinα cos s, X1 = sin s, X2 = − cosα cos s.

Differentiating with respect to the independent variable s, we get

Y0 = − sinα sin s, Y1 = cos s, Y2 = cosα sin s.

Identifying the eccentricity e = sinα of the orbit and performing the extended stereo-

graphic map in Eq. (3.3) and Eq. (3.10),

x1 =
sin s

1− e cos s
, x2 =

−
√

1− e2 cos s

1− e cos s

y1 = cos s− e, y2 =
√

1− e2 sin s.
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We thus have a phase space curve of a particle in a bound Kepler problem. Setting

~p = −~x, we get

p2
1 +

(
p2 −

e√
1− e2

)2
=
( 1√

1− e2

)2
,

which agrees with the circular momentum space curve we saw in Eq. (2.7). In addition,

the variable s is a well-known quantity in celestial mechanics called eccentric anomaly.

Given the quantity |~y| = 1 − e cos s from the phase space curve, we can now explicitly

determine the relationship between t and s:

t =

∫ s

0
|~y|ds′ =

∫ s

0
(1− e cos s′)ds′,

or

t = s− e sin s. (3.17)

This transcendental equation is called the Kepler’s equation. Through the Moser ap-

proach, we were thus not only able to regularize the Kepler problem by changing our

independent variable from t to s, but also obtain the extended geometric picture of the

phase space of the Kepler problem.

3.1.2 Scattering State

For the scattering state (E > 0) problem, we proceed in analogy to the bound state

problem [14]. Let us consider the configuration manifold H3 embedded in R1,3, and

let X = (X0, ~X) ∈ R1,3 be the configuration coordinates. H3 consists of all “unit”

vectors |X|2 = 1, where |X|2 = X2
0 − | ~X|2 under the new metric signature (1,3). The

stereographic projection f : H3
N → R3, where H3

N = H3 −N and N = (1,~0), is

~x =
~X

1 +X0

for the coordinates ~x ∈ R3. The inverse map f−1 : R3 → H3
N is

X0 =
|~x|2 + 1

|~x|2 − 1
,

~X =
2~x

|~x|2 − 1
.

It is then straightforward to derive the following maps in analogy to the bound case:

~y = (1 +X0)~Y + Y0
~X

Y0 = −~x · ~y

~Y =
1

2
(|~x|2 − 1)~y − (~x · ~y)~x.
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The norm |Y |2 = Y 2
0 − |~Y |2 is

|Y |2 = −1

4
(|~x|2 − 1)2|~y|2.

and the free Hamiltonian F giving the geodesic flow on H3 is

F (~x, ~y) =
1

2
|X|2|Y |2 = −1

8
(|~x|2 − 1)2|~y|2.

This time, let us define the new Hamiltonian J =
√
−2F − 1 such that J ′(F ) =

√
1
−2F .

Explicitly,

J(~x, ~y) =
1

2
(|~x|2 − 1)|~y| − 1. (3.18)

Taking the convenient choice J ′(F ) = 1 so that the vector fields of the two Hamiltonians

coincide, i.e. ξJ(F ) = ξF , we restrict ourselves to the constant energy submanifold

F = −1
2 of T ∗R3, which is equivalent to the submanifold J = 0 of the new Hamiltonian.

It can be verified that the Hamiltonian J satisfies the Hamilton’s equations for the

canonical coordinates (~x, ~y). We observe that

J = |~y|
(
H − 1

2

)
,

where H(~x, ~y) = |~x|2
2 −

1
|~y| and |~y| 6= 0. Identifying ~p = −~x and ~q = ~y, we recover

H(~q, ~p) =
|~p|2

2
− 1

|~q|
, (3.19)

the Kepler Hamiltonian. The submanifold H = 1
2 of T ∗R3 is identical to the submanifold

J = 0. Indeed again, the regularizing parameter corresponding to Hamiltonian J is the

eccentric anomaly s defined by the relation dt/ds = |~y|, where time t is the evolution

parameter corresponding to Kepler Hamiltonian H. Again, we have inserted the pole

N into H3
N in our regularization to recover H3, the complete space of orbits in the

scattering Kepler problem.

We have restricted ourselves to the positive Kepler Hamiltonian H = 1
2 . We can

generalize this to any positive energy submanifold H = 1
2λ if we rescale our variables

~q 7→ λ2~q, ~p 7→ ~p

λ
, t 7→ λ3t.

in the same manner we have generalized the negative energy submanifold.
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3.2 Kustaanheimo-Stiefel Method

The Kustaanheimo-Stiefel map regularizes the Kepler problem by showing the equiva-

lence of the 3d bound/scattering Kepler problem and the 4d simple/inverted isotropic

harmonic oscillator, respectively. The 4d isotropic harmonic oscillator is a regularized

system. Though an unregularized system, we present the inverted harmonic oscilla-

tor since it is relevant to our discussion of the implications of Kepler-Lorentz duality.

Though we will mainly claim the map and discuss some of its implications in this sec-

tion, we will derive the Kustaanheimo-Stiefel map in Chapter 5. The equivalence of the

two systems are also demonstrated in Chapter 5 by showing that the map is a canonical

transformation.

The Kustaanheimo-Stiefel map K : T ∗R4 → T ∗R3 is given in the bound/scattering

states of the Kepler problem. The T ∗R4 in the domain of K denotes the cotangent

bundle of the 4d harmonic oscillator, not that of the embedding space of 3-manifolds

seen in the Moser method. We will present the inverse map and its implications via the

Kepler-Lorentz duality in Chapter 5.

3.2.1 Bound State

In the bound state case [2, 15], let us take the coordinates xi in momentum space R3.

We can express xi in terms of the coordinates zµ in R4:

x1 = 2(z1z3 + z2z4),

x2 = 2(z1z4 − z2z3),

x3 = z2
1 + z2

2 − z2
3 − z2

4 ,

(3.20)

from which it follows that

|x| = |z|2. (3.21)

In mathematical physics, this map alone is called the Hopf map H : S3 S1

−→ S2, which

amounts to representing S3 on S2 by attaching a S1 fiber at each point of S2. Hence,

the Kustaanheimo-Stiefel map K is the canonical extension of the Hopf map H [14].

Properties of the new variables zµ providing the intuition for the Hopf map will soon

follow. Meanwhile, the coordinate space variables yi in T ∗R3 can be expressed in terms

of zµ, wµ in T ∗R4:

y1 = −z1w3 + z3w1 + z2w4 + z4w2

|z|2
,

y2 =
z2w3 + z3w2 − z1w4 − z4w1

|z|2
,

y3 =
z3w3 + z4w4 − z1w1 − z2w2

|z|2
.

(3.22)
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The coordinates of the domain possess the constraint

z1w2 − z2w1 + z3w4 − z3w4 = 0. (3.23)

Since dimT ∗R4 = 8 and due to the constraint in Eq. (3.23), the map K must have a

1-dimensional kernel, which is the space in the domain that maps to 0 in the image.

The map K is not one-to-one, since all pairs z′, w′ related to z, w by
z′1

z′2

z′3

z′4

 =


cosϕ − sinϕ 0 0

sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ




z1

z2

z3

z4

 (3.24)

and 
w′1

w′2

w′3

w′4

 =


cosϕ − sinϕ 0 0

sinϕ cosϕ 0 0

0 0 cosϕ − sinϕ

0 0 sinϕ cosϕ




w1

w2

w3

w4

 (3.25)

are mapped to the same pair xi, yi for every ϕ. This gives the kernel. The S1 “gauge”

attached to every point of S2 is exactly this kernel for the Hopf map taking zµ 7→ xi.

Now, let us take zµ as coordinates and wµ as conjugate momenta on the phase space

T ∗R4. We assume that zµ, wµ and xi, yi are related by a canonical transformation, which

we will show in Chapter 5. Performing a canonical exchange, plugging the results into

the new Hamiltonian J in Eq. (3.14) from the Moser method, and after considerable

algebra, we get

J(zµ, wµ) =
1

2
(|z|2 + |w|2)− 1. (3.26)

This is the Hamiltonian of the 4d isotropic harmonic oscillator. We have shown the

equivalence of 3d Kepler problem and the 4d harmonic oscillator under a canonical

transformation K.

3.2.2 Scattering State

It is straightforward from the bound state case to consider the scattering state problem.

The map taking xi 7→ zµ is exactly the same as in the bound state case in Eq. (3.20),

so we still have the Hopf map H. The expression of yi in terms of the pair zµ, wµ differs
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by a minus sign in each component:

y1 =
z1w3 + z3w1 + z2w4 + z4w2

|z|2
,

y2 =
z1w4 + z4w1 − z2w3 − z3w2

|z|2
,

y3 =
z1w1 + z2w2 − z3w3 − z4w4

|z|2
.

(3.27)

The constraint and the kernel relation in Eq. (3.23), (3.24), and (3.25) remain same as

well. After conducting the same procedure as above, we insert our expressions into the

Hamiltonian J of the scattering state Moser map in Eq. (3.18), which gives

J(zµ, wµ) =
1

2
(|z|2 − |w|2)− 1, (3.28)

due to the negative sign in J . This is the Hamiltonian for the 4d inverted harmonic

oscillator. Given that map K is a canonical transformation, this shows the equivalence

of the 3d scattering state Kepler problem and the 4d inverted harmonic oscillator.



Chapter 4

The Kepler-Lorentz Duality

In Chapter 2, we saw that the scattering state Kepler problem, also known as Rutherford

(Coulomb) scattering, is symmetric under the action of the Lorentz group SO(1, 3).1 In

the algebraic approach, we found that the Poisson bracket relations of the six gener-

ators Li and Āi form a Lie algebra isomorphic to that of SO(1, 3). In the geometric

approach, we saw that the momentum space curves of the scattering Kepler problem,

which we found to be arcs of circles, mapped to geodesics on H3, an invariant manifold

of SO(1, 3). In this chapter, we merge the two approaches by finding the explicit form

of the transformations, induced by the generators of so(1, 3), that map geodesics to

geodesics on H3.

While it is clear that physical transformations corresponding to the generators Li

are rotations, the transformations corresponding to Āi are less intuitive. Here, we take

a hint from special relativity, which shares the same symmetry under the Lorentz group

SO(1, 3) as the scattering-state Kepler problem. We can thus predict that the transfor-

mations of Āi will resemble those of boosts in relativity—the transformations between

inertial reference frames related by relative velocities. We proceed with this analogy

in mind. In constructing the analogous transformations in the scattering Kepler prob-

lem, we find that the hyperbolic “boosts” generated by Āi are expressible in terms of

familiar quantities in scattering problems. We introduce new scattering variables in the

velocity space to express the explicit boost representations of SO(1, 3). Remarkably,

this allows us to cast the scattering-state Kepler problem in a form that is in an exact

correspondence wit the relativistic free particle kinematics of special relativity. We call

this correspondence the Kepler-Lorentz duality. We also find that physical interpre-

tations of boost transformations that belong to the group SL(2,C), a double cover of

SO(1, 3), come out naturally from the construction. In addition to the transformations,

1The scattering state Kepler problem also includes attractive potential problems for which E > 0,
but we limit our discussion to the repulsive case. The actual Rutherford scattering experiment involved
scattering between alpha particles and the nuclei of the gold atom, which is indeed a repulsive Kepler
problem.

29
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Figure 4.1: Poincaré disk (gray) in velocity space with a geodesic (solid blue)

we present the four-vectors of the scattering-state Kepler problem that are in correspon-

dence to the velocity, momentum, and position 4-vectors of special relativity. As we

construct the duality, it will become clear why we are first discussing the problem in

velocity space rather than momentum space as we have done in previous chapters.

4.1 Geometric Context

Prior to further discussion, let us develop a geometric understanding of the scattering-

state Kepler problem. This will be necessary to understand the motivation behind the

new scattering variables.

In the scattering-state Kepler problem, the kinetic and potential terms of the Hamil-

tonian are both positive definite, and the potential term disappears as r → 0. Thus,

the asymptotic states of the scattered particle in velocity space must be those of a free

particle and lie on the boundary of a 3-dimensional ball of radius v0 =
√

2H
m . In the

repulsive case, to which we limit our discussion, the speed of the particle decreases as it

approaches the force-center and then increases to the limiting value as it recedes from

it. The velocity of the scattered particle is hence always less than or equal to that in

its asymptotic state, and its entire motion in velocity space lies inside the ball of radius

v0 centered at the origin. In Chapter 2, we saw that the velocity space curve of a scat-

tering Kepler problem is an arc of a circle with a displaced center, where the arc lies

inside the disk of radius v0. We treated the problem on a 2-dimensional disk, since the

angular momentum conservation allows for the planar treatment of the problem. For

the Kepler problem in 3-dimensions, we consider geodesics on a 2-sphere in R3 with a
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Figure 4.2: Stereographic projection between geodesics on P and on H3

displaced center. The arc of such a geodesic that lies inside a 3-ball of radius v0 at the

origin is the velocity space trajectory of the scattering-state Kepler problem. This is a

trivial generalization of picture seen in Chapter 2. Now, we claim that the geodesic and

the ball intersect at orthogonal angles. We can prove this easily by verifying that the

Pythagorean theorem holds between the radius of the ball v0, the radius of the sphere

R, and the displacement of the sphere center from the origin D (Fig. 4.1). Recall from

Chapter 2 that R = k
L and D = A

mL . Indeed,

R2 + v2
0 =

m2k2 + 2mHL2

m2L2
=
( A

mL

)2
= D2.

It turns out that the ball in which the velocity space motion is contained can be

identified with a model of hyperbolic geometry called the Poincaré ball P. On the

Poincaré ball P of radius v0, the metric tensor is given by

ds2 =
4 (dv)2[

1− ( vv0 )2
]2 , (4.1)

where vi (i = 1, 2, 3) are the Cartesian coordinates of R3 in which P is embedded.

We have also written v =
√
vivi. Geodesics on P are arcs of circles orthogonal to the

boundary of P. We have thus identified the velocity space curves of the scattering Kepler

problem as geodesics on P [16]. As seen in Chapter 3, there is a stereographic map from

P in R3 to the upper sheet of the 3-hyperboloid H3 in R1,3, where the geodesics on P
map to geodesics on H3. This map, from P of radius v0 to H3 of the form

(V 0)2 − (V 1)2 − (V 2)2 − (V 3)2 = v2
0, (4.2)
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is given by

V 0

v0
=

1 + ( vv0 )2

1− ( vv0 )2
,

V i

v0
=

2( v
i

v0
)

1− ( vv0 )2
, (4.3)

where the 4-velocity V µ (µ = 0, 1, 2, 3) are the Cartesian coordinates of R1,3 in which

H3 is embedded. Geodesics on H3 are the intersections of H3 with a plane containing

the origin, and the “boost” transformations generated by Āi map geodesics to geodesics

on H3 by changing the slope of such a plane (Fig. 4.2). Thus, on P, the generators Āi

transform the R and D of the 2-sphere on which the geodesic curve lies.

From a group theoretic point of view, it is only natural at this point to fix the

direction of the LRL vector A as Āi generate boosts in a particular direction. This is

physically equivalent to fixing each of the scattering trajectories such that all trajectories

are symmetric about a particular axis.

4.2 Scattering in New Variables

Let us consider the quantity vc, the velocity of the scattered particle at the closest point

of approach to the force center. That is, vc is the minimum radial distance from the

origin to a geodesic on the Poincaré ball P. The quantity vc is one of the few natural

quantities to consider given the symmetries of the velocity-space particle trajectory. It

will turn out that vc is important quantity in the duality and in the boost transformations

of spinors. At the closest point of approach, the LRL vector A is in the same direction

as the position vector r, and familiar scattering quantities such as eccentricity ε, impact

parameter b, and the scattering angle θ are more intuitively obtained in terms of vc.

After we obtain the scattering quantities, we will find the relationship between vs and

vc to express them in terms of vs.

The eccentricity ε is related to A by

ε2 =
( A

mk

)2
= 1 +

2EL2

mk2
.

At the closest point of approach, the position and velocity vectors are orthogonal. The

angular momentum is thus L = mvcrc, where rc is the closest position of the scattering

trajectory to the force center. Also, solving for rc in the total energy H = 1
2mv

2
c + k

rc
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gives rc = 2k
m

1
v20−v2c

. The angular momentum is then L = 2kvc
v20−v2c

. Thus,

ε2 = 1 +
v2

0

k2

( 2kvc
v2

0 − v2
c

)2

= 1 +
4v2

0v
2
c

v4
0 + v4

c − 2v2
0v

2
c

=

(
v2

0 + v2
c

v2
0 − v2

c

)2

.

where we substituted v0 =
√

2E
m and L in the first line. It follows that

ε =
1 + ( vcv0 )2

1− ( vcv0 )2
. (4.4)

We can also obtain the impact parameter b in terms of vc by comparing the com-

ponents of A at the closest point of approach to the force center and at the asymptotic

state. As A is an integral of motion, the sum of the components must remain invariant.

Since the potential is repulsive, we take k → −k, and A becomes

A = m(v× L) +mkr̂.

At the closest point of approach, r and v are orthogonal and it follows that m(v×L) =

m2(v× (r× v)) = (m2v2
crc)r̂. The LRL vector A is thus given by

A = (m2v2
crc +mk)r̂.

At the asymptotic state of scattering (i.e. at t =∞), L = mv0b and A is given by

A = (m2v2
0b)n̂

′ + (mk)r̂′,

where the unit vectors n̂′ and r̂′ point in orthogonal directions. Comparing A at the

two points and using the Pythagorean theorem gives

(m2v2
0b)

2 + (mk)2 = (m2v2
crc +mk)2

mv4
0b

2 = mv4
cr

2
c + 2kv2

crc.



The Kepler-Lorentz Duality 34

Solving for b2 and simplifying,

b2 = r2
c

(vc
v0

)4
+

2k

mv2
0

rc

(vc
v0

)2

=
4k2

m2v4
0

v4
c

(v2
0 − v2

c )
2

+
4k2

m2v4
0

v2
c

(v2
0 − v2

c )

=
( 2k

mv2
0

)2 v2
c

(v2
0 − v2

c )

[
v2
c

(v2
0 − v2

c )
+ 1

]

=
( 2k

mv2
0

)2 v2
0v

2
c

(v2
0 − v2

c )
2

=
( 2k

mv2
0

)2 ( vcv0 )2[
1− ( vcv0 )2

]2 ,
where we substituted for rc in the second line. It follows that

b =
k

mv2
0

2( vcv0 )

1− ( vcv0 )2
. (4.5)

A mathematical property of hyperbolae directly relates the eccentricity ε to the scatter-

ing angle θ by ε = csc (θ/2). The substitution of ε and a direct calculation gives

θ = 2 arcsin

[
1− ( vcv0 )2

1 + ( vcv0 )2

]
. (4.6)

One may have noticed that the form of the eccentricity ε in Eq. (4.4) and the impact

parameter b in Eq. (4.5) closely resembles those of the stereographic map to the coor-

dinates V µ in Eq. (4.3). In our discussion of the duality, we will find that this is no

coincidence.

Let us now introduce another variable vs. Physically, the quantity vs is the asymp-

totically invariant component of the scattered particle’s velocity. On the Poincaré ball

P, it is the Cartesian component that remains unchanged at both ends of a geodesic.

Note that the quantity vs is defined with the Euclidean, rather than hyperbolic, metric

on the velocity space (i.e. vs is not infinite). The variable vs is another natural quantity

to consider given the symmetries of the velocity-space particle trajectory. Let us find

the relationship between vc and vs. Fig. 4.1 shows the various quantities on P. Given

this picture, it is rather straightforward to derive the relationship between vs and vc. We

notice the trigonometric relations cosϕ = vs/v0 and tanϕ = R/v0, where ϕ is the angle

between the v3-axis and the solid gray line on P denoting the Euclidean radius v0. We

solve for R, which gives R = v0 tanϕ = ( vsv0 )−1
√
v2

0 − v2
s . We also see that D = vc +R.
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From the Pythagorean identity D2 = v2
0 +R2 verified above, we get

(vc +R)2 = v2
0 +R2(vc

v0

)2
+

2R

v0

(vc
v0

)
− 1 = 0

Solving for vc/v0 and substituting R, we find after some algebra

vc
v0

=
1−

√
1− ( vsv0 )2

( vsv0 )
=

( vsv0 )

1 +
√

1− ( vsv0 )2
. (4.7)

Also, inverting Eq. (4.7) gives

vs
v0

=
2( vcv0 )

1 + ( vcv0 )2
. (4.8)

Let us define the quantity δ =
√

1− ( vsv0 )2 such that
(
vc
v0

)2
= 1−δ

1+δ for simplicity in

computation.

We are now ready to express the scattering quantities in terms of vs/v0. Replacing

vc/v0 in Eq. (4.4) gives for the eccentricity ε

ε =
1 + ( vcv0 )2

1− ( vcv0 )2

=
(

1 +
1− δ
1 + δ

)(
1− 1− δ

1 + δ

)−1

= δ−1,

and hence

ε =
1√

1− ( vsv0 )2
. (4.9)

For the impact parameter b in Eq. (4.5),

b2 =
( 2k

mv2
0

)2 ( vcv0 )2[
1− ( vcv0 )2

]2
=
( 2k

mv2
0

)2(1− δ
1 + δ

)(
1− 1− δ

1 + δ

)−2

=
( 2k

mv2
0

)2(1− δ
1 + δ

)(1 + δ

2δ

)2

=
( 2k

mv2
0

)2(1− δ2

4δ2

)
=
( k

mv2
0

)2 ( vsv0 )2

1− ( vsv0 )2
.
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Taking the square root, we get

b =
k

mv2
0

( vsv0 )√
1− ( vsv0 )2

. (4.10)

Finally, the scattering angle θ in Eq. (4.6) is easily found to be

θ = 2 cos−1
(vs
v0

)
. (4.11)

One can verify the expressions for ε, b, and θ by calculating the Rutherford scattering

cross section in terms of vs/v0, then using their expressions to retrieve the known cross

section.

4.3 Kepler-Lorentz Duality

The expressions for ε and b in Eq. (4.9) and (4.10) in the scattering-state Kepler problem

are highly reminiscent of Lorentz transformations in special relativity. From the explicit

forms of the scattering quantities, we derive the expressions of the corresponding boost

transformations, analogous to that of Lorentz transformations, using the metric tensor

of the Poincaré ball P. Then, we derive the expressions of various four-vectors in the

Kepler problem and compare the results to analogous ones in relativity.

4.3.1 Boost Transformations via SO(1,3)

We begin by considering a v1–v3 plane of the Poincaré ball P in Fig. 4.1, without loss

of generality. The upper indices denote the index, not a power. At least in this chapter,

we denote the power of an indexed quantity with a parenthesis, i.e. (v)3. The metric

tensor on P, in Eq. (4.1), is

ds2 =
4 (dv)2[

1− ( vv0 )2
]2 ,

In the end, we would like to express the resulting quantity in terms of vs. However, it

is easier to first consider integrating over the metric just along the v3-axis, without loss

of generality, from the origin to vc. The expression in terms of vs will follow from this

consideration. The metric tensor thus becomes

ds =
2 d(v3)

1− (v
3

v0
)2
.

We can now integrate to get the distance to vc on P:

s =

∫ vc

0

2 d(v3)

1− (v
3

v0
)2

= 2v0 tanh−1
(vc
v0

)
.
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Inverting, we obtain the following:

vc
v0

= tanh
( s

2v0

)
.

Now, notice that the relation between vs and vc in Eq. (4.8) is the angle addition formula

for hyperbolic tangents, in the special case when the angles being added are equal. The

quantity vs is thus twice as big as vc in the relativistic sense. Plugging the above relation

into Eq. (4.8), we get

vs
v0

=
2 tanh ( s

2v0
)

1 + tanh2 ( s
2v0

)
= tanh

( s
v0

)
.

Let us define rapidity φ ≡ s
v0

, following the analogy from special relativity. In relativity,

rapidity φ is the additive parameter of boost transformations among inertial frames.

Then,

tanhφ =
vs
v0
. (4.12)

Also defining ζ ≡ vs
v0

, it follows in a straightforward manner from trigonometric relations

that

coshφ =
1√

1− ( vsv0 )2
= ε, (4.13)

sinhφ =
( vsv0 )√

1− ( vsv0 )2
= ζε =

mv2
0b

k
. (4.14)

Indeed, coshφ and sinhφ are the matrix elements of the representations of the Lorentz

group SO(1, 3) corresponding to boost transformations. We can thus specify the quanti-

ties of correspondence in the boost transformations of the scattering-state Kepler prob-

lem and special relativity, which is evident from Eq. (4.13) and (4.14):

Scattering Kepler Special Relativity

ζ =
vs
v0

←→ β =
v

c
(4.15)

ε =
1√

1− ( vsv0 )2
←→ γ =

1√
1− (vc )2

It follows that vs ↔ v and v0 ↔ c. Given the duality, we can show the form of boost

transformations in the two contexts explicitly. In special relativity, the boost transfor-

mations of the 4-velocity Uµ along the U3-axis is given by
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U ′0

U ′1

U ′2

U ′3

 =


γ 0 0 −γβ
0 0 0 0

0 0 0 0

−γβ 0 0 γ




U0

U1

U2

U3

 .

In the scattering-state Kepler problem, the same transformations of the corresponding

4-velocity V µ, defined in Eq. (4.2) and (4.3), along the V 3-axis is given by
V ′0

V ′1

V ′2

V ′3

 =


ε 0 0 −εζ
0 0 0 0

0 0 0 0

−εζ 0 0 ε




V 0

V 1

V 2

V 3

 .

Therefore, Uµ and V µ have same transformation properties and the new variable vs/v0

yields the duality between boost transformations.

4.3.2 Four-vectors

Four-vectors Xµ are central objects in special relativity and Lorentz-covariant theories

that transform under the action of the Lorentz group SO(1, 3) as

Xµ → X ′µ = ΛµνX
ν

where Λ ∈ SO(1, 3). Here, we show the equivalence of various four-vectors in the

scattering Kepler problem and special relativity under the boost duality relations in Eq.

(4.15).

Let us first make geometrically precise the objects of correspondence which are

subject to boost transformations in the two contexts. In special relativity, the velocity

of inertial frames is the object on which boost transformations act. Each point on

the velocity-space Poincaré ball P represents a particular inertial frame, and boost

transformations take one point on P to another. The Poincaré ball P is the stereographic

projection of the invariant H3 in the Minkowski velocity space R1,3. In the scattering

Kepler problem, we have so far limited our discussion on P to geodesics rather than

points. On P, there is an isomorphism between geodesics and points, modulo rotations

about an axis given by vc. That is, the location of the point vc on P uniquely specifies

the entire geodesic curve, up to a rotation of P about the axis on which vc lies.2 With

some thought, this fact is apparent from Fig. 4.1. Therefore, in the scattering problem,

the velocity of the scattered particle at the closest point of approach, |v| = vc, is the

2Geodesics with vc at {0} are head-on collision curves and are specified up to rotation of the ball P.
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object on which boost transformations act. Therefore, when checking the duality of

four-vectors, we must evaluate the four-vector components of the scattering problem

at |v| = vc, although its general expression may be used to specify the whole curve.

We have thus constructed the duality between points on P in special relativity and the

scattering Kepler problem.

But wasn’t the frame velocity v in special relativity dual to the asymptotically

invariant component of the velocity vs in the scattering-state Kepler problem, rather

than being dual to the velocity vc at the closest point of approach to the target? This

statement is true, but there is no conflict. For any value of the eccentricity ε, there is

an isomorphism between vs and vc given by Eq. (4.7) and (4.8). Let us take vs and

vc as vectors pointing from the origin to the quantities vs and vc along the symmetry

axis of the velocity-space curve. Due to the symmetry of the curve, one cannot build a

consistent algorithm to construct an isomorphism (up to rotation about the symmetry

axis of the curve) between the space of vectors and of curves unless the vector points

along the symmetry axis of the curve. Since only the endpoint of the vector vc lies

on the curve, we evaluate the particle velocity at |v| = vc for consistency, and there is

no conflict. In the more elegant spinor representations considered below, we show that

the dualities of boost representations and Hermitian forms of 4-vectors are naturally

expressed with the use of vc only, rather than both vs and vc.

Let us check the dualities of four-vectors. For the 4-velocities, we can check that

the norm-squared of the components of 4-velocities are equal under the boost dualities

in Eq. (4.15). Taking the norm-square of component U0 of the relativistic 4-velocity

Uµ, we get

U0U0 =
dx0

dτ

dx0

dτ
= c2

( dt
dτ

)2
= c2γ2 ↔ v2

0ε
2, (4.16)

where τ is the proper time. In the last step, we used the duality relation in Eq. (4.15). If

we contract V 0 of the scattering Kepler 4-velocity V µ with itself and evaluate at |v| = vc,

we get

V 0V0

∣∣
|v|=vc = v2

0

[
1 + ( vcv0 )2

1− ( vcv0 )2

]2

= v2
0ε

2, (4.17)

where in the last step we used Eq. (4.4). We thus verify from Eq. (4.16) and (4.17)

that the 0-th components U0 and V 0 are equal up to orthogonal transformations. The

contraction of U i with itself gives

U iUi = c2
[( dt
dτ

)2
− 1
]

= c2(γ2 − 1) ↔ v2
0(ε2 − 1), (4.18)

where the first step follows from the 4-vector contraction

ηµνU
µUν = U0U0 − U iUi = c2, (4.19)
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with the Minkowski metric η = diag(1,−1,−1,−1). Also considering the 3-contraction

of V i and evaluating at |v| = vc gives

V iVi
∣∣
|v|=vc = v2

0

[
2( vcv0 )

1− ( vcv0 )2

]2

= v2
0

(mv2
0b

k

)2
= v2

0(ε2 − 1), (4.20)

where in the first step we used Eq. (4.3), the second step used Eq. (4.5), and the last

step rewrote ζ in terms of ε in Eq. (4.14). As in Eq. (4.19), we can also write the

4-vector contraction of V µ in Eq. (4.2) as

ηµνV
µV ν = V 0V0 − V iVi = v2

0. (4.21)

Comparing Eq. (4.18) and (4.20), we verify that the 3-velocities U i and V i are also equal

up to orthogonal transformations. Thus, we have verified the equivalence of 4-velocities

Uµ and Vµ under the duality. Indeed, the similarity in the expression of ε and b in Eq.

(4.4) and (4.5) to the stereographic map to V µ in Eq. (4.3) was no coincidence.

Given the 4-velocities, it is easy to obtain the 4-momenta. In special relativity, the

4-momentum Pµ is simply

Pµ = mηµνU
ν , (4.22)

where m is the rest mass of a relativistic particle. Its 4-vector contraction yields

ηµνPµPν = m2, (4.23)

where we set c = 1. This is the familiar energy-momentum relation. Following the

analogy, the 4-momentum Xµ in the scattering-state Kepler problem is

Xµ = mηµνV
ν , (4.24)

where m is the mass of the non-relativistic scattered particle. Similarly, the 4-vector

contraction yields

ηµνXµXν = m2, (4.25)

where we set v0 = 1. Since we already verified the duality of 4-velocities, the duality of

4-momenta Pµ and Xµ followed trivially by a lowering of indices and a rescaling by m.

We now argue for the equivalence of 4-positions under the duality. First considering

relativity, recall that we are only considering the set of all inertial frames within the null

cone sharing the spacetime origin. That is, we are not considering translations. Then

4-displacement becomes the 4-position Qµ, and its invariance relation is

ηµνQ
µQν = s2, (4.26)
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where s is the “distance” between the origin and a spacetime event in the Minkowski

metric. The quantity s can also be interpreted as the proper time τ measured by an

inertial-frame observer traveling from the origin to an event. The invariance relation

in Eq. (4.26) defines H3, which is the set of all points of equal Minkowski distance s

from the origin. It is known that the cotangent bundle of flat Minkowski spacetime

is the 8-dimensional phase space T ∗R1,3 = R1,3 ⊕ R1,3, which includes spacetime and

energy-momentum. We are then free to consider the canonical exchange of Qµ and Pµ,

meaning that the cotangent bundle of the energy-momentum space is equivalent to the

cotangent bundle of spacetime. In relativity, particles of rest mass m are constrained on

the invariant mass shell H3 in Eq. (4.23). Exchanging Qµ and Pµ, this is just a problem

of a free particle on H3 embedded in R1,3. We have already seen the treatment of this

problem in the Moser Method of Chapter 3, where we obtained the coordinates Xµ and

Y µ of R8 for the scattering-state Kepler problem. If the Kepler-Lorentz duality holds

for the cotangent bundles, not just the momentum manifolds, we should be able to show

the invariance of H3 of the cotangent bundle, i.e. ηµνY
µY ν = constant, as in the Moser

method. Recall from Chapter 3 that

Y0 = −xkyk, Y i =
1

2

(
xkxk − 1

)
yi −

(
xkyk

)
xi, (4.27)

where we used the index notation. Contracting Y µ with itself in the Minkowski metric

and simplifying, we get

ηµνY
µY ν = −1

4

(
xkxk − 1

)2(
ykyk

)
= 2F, (4.28)

where F is the Hamiltonian defined in Chapter 3. Recall that in order to retrieve the

Kepler Hamiltonian H, we fixed the F = 1
2 submanifold of T ∗R3 for the scattering

case, which corresponding to geodesic motion on a constant energy surface. Therefore,

the same invariance relation holds. The coordinate space curves of the scattering state

Kepler problem is given by a parallel projection of geodesics on this H3 [5]. If we

compare Eqs. (4.26) and (4.28), we see that the invariance of the spacetime distance s

in relativity corresponds to the conservation of energy
√

2F in the Kepler problem. Note

that while the vs gave us the duality of transformations, vc gave the duality relations of

objects subject to the transformations.

4.3.3 Boost Transformations via SL(2,C)

There is another, perhaps more elegant, formulation of special relativity in terms of

actions on spinors instead of 4-vectors [13, 17]. We know that the representations of
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the Lorentz group Λµν ∈ SO(1, 3) act on 4-vectors Xµ like

Xµ → X ′µ = ΛµνX
ν

as seen in the previous section. Let us consider an isomorphism that takes 4-vectors to

Hermitian matrices:

Xµ =


X0

X1

X2

X3

 7→ X = X011 +Xiσi =

(
X0 +X3 X2 − iX3

X2 + iX3 X0 −X3

)
,

where 11 is the 2 × 2 identity matrix and σi are Pauli matrices. The matrix X takes

most general form of Hermitian matrix, and its determinant gives the usual invariance

condition

det X = (X0)2 − (X1)2 − (X2)2 − (X3)2.

Which group, then, acts on X to induce transformations that amount to Lorentz trans-

formations? There is a double cover of the Lorentz group called the Möbius group,

denoted SL(2,C). Representations of SL(2,C) can generally be written

A =

(
a b

c d

)
∈ SL(2,C), ad− bc = 1, a, b, c, d ∈ C, (4.29)

and X transforms under SL(2,C) like

X→ X′ = AXA†, (4.30)

where the dagger † is the Hermitian adjoint operation. This amounts to the Lorentz

transformation of X. If det X = 0, it is possible to decompose X into the outer product

of two identical spinors ξ ∈ C2 such that X = ξξ†. In this sense, a spinor is a “square

root” of a 4-vector. Note that

X′ = AXA† = Aξξ†A† = (Aξ)(Aξ)†,

so the spinor ξ transforms like

ξ → ξ′ = Aξ

under the action of SL(2,C). Though such spinors are fascinating, in our case det X 6= 0,

meaning that the 4-vector Xµ isomorphic to X is not null. Nevertheless, our short

discussion of spinors here will aid the understanding of twistors.

Let us turn our attention to the representations of SL(2,C), which turns out to be
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a more natural setting for the Kepler-Lorentz duality than are than representations of

SO(1, 3). An interesting property of SL(2,C) is that the angles of generalized rotations

(boosts and rotations) are halved. For example, spinors are carried to the negatives of

themselves under a pure rotation by 2π and only comes back to itself under a pure rota-

tion by 4π. Representations of SL(2,C) inducing pure boosts can be written generally

as

A = ± exp
(
− φ

2
niσi

)
, (4.31)

where ni is a unit vector specifying the direction of the boost. In matrix form, this can

be decomposed as into cosh φ
2 and sinh φ

2 . Recall the expression of the quantity

vc
v0

= tanh
φ

2
, (4.32)

the velocity of particle at the point of closest approach to the force center, which we

obtained via the metric on P. Then, the boosts of SL(2,C) can be expressed in terms

of the quantities

cosh
φ

2
=

1√
1− ( vcv0 )2

,

sinh
φ

2
=

( vcv0 )√
1− ( vcv0 )2

.

(4.33)

Hence, the new scattering variables naturally give us representations of SO(1, 3) as well

as SL(2,C). Curiously, the boost representations of SO(1, 3) in terms of vs and those

of SL(2,C) in terms of vc take the same mathematical form. The new variables make

physically and geometrically explicit the relationship between the transformations of

4-vector and those of rank-2 spinors.

How are vc and vs related geometrically? While vc is a quantity inside the Poincaré

ball P, vs is a quantity at the conformal boundary of P (Fig. 4.1). By the duality, we

can easily obtain the quantity v̄, dual to vc, inside P of relativity by Eq. (4.8):

v̄

c
=

(vc )

1 +
√

1− (vc )2
. (4.34)

Our analysis for the spinor formulation of the scattering-state Kepler problem suggests

that v̄ may be a natural quantity for boost representations in the spinor formulation of

relativity. It would thus be of interest to see whether such a quantity turns out to be

of use in the spinor formulation of relativity. The ideas presented in this chapter are

simple, yet subtle. More discussion along the lines of the geometry noted here is given

in Chapter 5.



Chapter 5

Conformal Symmetry and

Twistor Theory

The Kepler-Lorentz duality, presented in Chapter 4, provides an elegant framework in

which to think about the dynamics of the scattering Kepler problem and the kinematics

of flat spacetime as different physical manifestations of the same mathematical problem.

We would ideally like to use this classical duality as a starting point to gain new theoret-

ical insights into both systems. However, as the Kepler problem and special relativity

are both thoroughly investigated topics in physics, it can be difficult to immediately

think of a way to extract more theoretical insights from the duality.1

In this chapter, we seek to uplift the Kepler problem and special relativity to the

less explored conformal symmetric context, where the duality may possibly be used to

shed light on each other. The advantages of doing so in the Kepler problem are many.

By moving to a conformal invariant manifold, we get a unified picture of the problem

for both positive and negative energies, obtained by taking various cross sections of the

manifold. In doing so, we retrieve the Moser map of the phase manifold, which can

be used to retrieve the Kepler Hamiltonian and other integrals of motion. We then

cast the problem in the context of twistor theory [18], originally proposed by Sir Roger

Penrose, where we retrieve the Kustaanheimo-Stiefel map between the 3-dimensional

scattering (positive energy) Kepler problem and the 4-dimensional inverted harmonic

oscillator. Together with the Kepler-Lorentz duality, this suggests the equivalence of

the 3D scattering state Kepler problem, 4D relativistic free-particle kinematics, and 4D

inverted harmonic oscillator.

Although we will be using concepts from advanced mathematics,2 we avoid the

1Besides the spinor formulation noted in Chapter 4, an exception may be the use of the famous
four-vector techniques from special relativity to facilitate some computations in the scattering Kepler
problem. However, this example still sees the duality as a computational tool rather than as an approach
to gain new theoretical insights.

2Namely, Lie groups and algebras, differential geometry, and Hamiltonian mechanics in the symplectic
formulation. To gain more background on these topics, consult [4, 13, 19–21] and the appendices of [2]

44
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rigorous theorem-proof style to emphasize the physical picture. We instead choose to

explain any new mathematical concepts introduced in more intuitive terms to suggest

a way in which one can think about the concept. Indeed, the aim of this chapter is

to paint possible directions of the research in broad strokes. This chapter follows Ch.

6-7 of Cordani [2] closely regarding the mathematical treatment of the Kepler problem,

and readers interested in the proofs of some of the claims made in this chapter may

refer there. However, the insights gained through the Kepler-Lorentz duality endows

the results in the Kepler problem an alternative side of physical interpretations.

We use the index and inner product conventions used in [2]. The range of the

indices are

A,B,C = −1, 0, 1, · · · , 4

µ, ν, ρ, σ = 0, 1, 2, 3

i, j, k = 1, 2, 3

We use (·, ·) : R3 × R3 → R for the 3-dimensional scalar product and 〈·, ·〉 : g∗ × g→ R
for the pairing between a Lie algebra g and its dual algebra g∗. For convenience, we also

write x =
√

(x, x) and y =
√

(y, y). Otherwise, we use the Einstein index notation.

5.1 The Conformal Group

Let us define the flat Minkowski space M0 as R1,3 = R1⊕R3 equipped with the pseudo-

Euclidean metric tensor ηµν = diag(1,−1,−1,−1). The identity connected component

of the 6-dimensional Lorentz group L0 = SO0(1, 3), together with the 4-dimensional

translation group T in M0, form the 10-dimensional Poincaré group P = L0 ×S T

via a semi-direct product.3 The action of the Poincaré group P, exhausting all possible

“rigid motions” on M0, preserves the metric ηµν . Transformations preserving angles

between any two lines in R1,3 are called conformal maps, and they are elements of the

conformal group C(1, 3) of Minkowski space M0. An equivalent way of defining the

conformal group C(1, 3) of M0 is the group of isomorphisms of smooth manifolds, or

“diffeomorphisms”, that transform the metric like

ηµν 7→ gµν(x) = w2(x)ηµν ,

where x ∈ M0 and w(x) is a non-vanishing function. Manifolds with the metric tensor

w2(x)ηµν are conformally related to the Minkowski space M0, meaning that there

exists an element of C(1, 3) that takes such a manifold to a manifold with the Minkowski

metric ηµν . Choosing w(x) = 1, we see that the Poincaré group P is a subgroup of

3Here, the semi-direct product instead of the direct product must be used since L0 and T are non-
compact groups.



Conformal Symmetry and Twistor Theory 46

C(1, 3). To look for all local nontrivial conformal maps, let us consider the most general

form of the infinitesimal conformal transformation

xµ 7→ x̄µ = xµ + εV µ(x) +O(ε2)

satisfying
∂x̄µ

∂xρ
∂x̄ν

∂xσ
ηµν = w2(x)ηρσ, with w(x) = 1 + εf(x) +O(ε2),

where the terms on the left hand side of the equation above are simply the transformation

Jacobians from xµ to x̄µ. We already know that the zeroth order term in ε should yield

the trivial solutions corresponding to the Poincaré group P, so we keep only the first

order terms in ε. Comparing the first order terms in ε, we obtain the flat space conformal

Killing Equation

∂µVν + ∂νVµ = 2f(x)ηµν ,

where ∂µ = ∂
∂xµ . It is known that the general solution of the conformal Killing Equation

is given by

Vµ(x) = tµ + λµνx
ν + dxµ + 2kνx

νxµ − kµxνxν , (5.1)

where λµν = −λνµ and the solution depends on 15 parameters tµ, λµν , d, and kµ. This

is the conformal vector field.

In differential geometry, the vector field gives a tangent vector at each point on the

manifold [4, 13, 21]. This relation in the transformed coordinates is

dx̄µ

dτ
= V µ(x̄),

where τ is the parameter along a curve on the manifold from which the tangent vector

is defined. Integrating while keeping only one of the four classes of parameters nonzero,

we get the following four transformations of C(1, 3):

i For tµ 6= 0, we get x̄µ = xµ + tµτ , the translation group T,

ii For λµν 6= 0, we get x̄µ = Λµν(τ)xν with Λ(τ) = exp (λτ), the Lorentz group L0,

iii For d 6= 0, we get x̄µ = exp (dτ)xµ, the dilation group D,

iv For kµ 6= 0, we get

x̄µ =
xµ − τkµxνxν

1− 2τkνxν + τ2kνkνxαxα
,

the special conformal transformation group K.

While other transformations are transparent in their physical interpretation, the mean-

ing of special conformal transformations are unclear. They can be understood as the
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composition of the operations invert-translate-invert:

xµ → xµ

xνxν
→ xµ

xνxν
− τkµ → xµ − τkµxνxν

1− 2τkνxν + τ2kνkνxαxα
.

On the Poincaré ball P projected from H3 embedded in Minkowski space M0, special

conformal transformations physically amount to turning the repulsive Kepler problem

inside P to an attractive problem outside P by taking k → −k of the coupling constant,

translating in stereographic coordinates, then taking again k → −k to a repulsive prob-

lem inside P. It is also immediately seen that the the special conformal transformations

become singular at a finite value of τ . The transformation can be regularized by adding

a null cone at infinity to the Minkowski space M0 to form the compactified Minkowski

space M discussed in the next section.

Let us express the 15 generators of the Lie algebras, corresponding to each of the

four subgroups of C(1, 3) above, in the basis {∂µ} of the conformal vector field. The

generators serve as the basis spanning the Lie algebra, which can then be exponentiated

to form elements of its corresponding Lie group. Thus, the conformal group C(1, 3) is

formed by a 15-dimensional conformal Lie algebra c(1, 3).

i Pµ = ∂µ, of the Lie algebra t of the translation group T,

ii Gµν = xν∂µ − xµ∂ν , of the Lie algebra l0 of the Lorentz group L0,

iii D = xµ∂µ, of the Lie algebra d of the dilation group D,

iv Kµ = 2xµx
ν∂ν − xνxν∂µ, of the Lie algebra k of the special conformal transforma-

tion group K.

It is tedious, but not difficult, to compute their Lie bracket relations, defined [A,B] =

AB −BA:

[Gαµ,Gαν ] = ηααGµν or = 0 if all indices different

[Gµν ,Pα] = ηµαPν − ηναPµ

[Gµν ,Kα] = ηµαKν − ηναKµ

[Pµ,Kν ] = 2Gµν + 2Dηµν

[Pµ,D] = Pµ

[Kµ,D] = −Kµ

[Gµν ,D] = [Pµ,Pν ] = [Kµ,Kν ] = 0.

The Lie bracket relations for c(1, 3) suggest a nonlinear Lie group structure, which

is a disappointment. However, let us consider the generators GAB formed by linear
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combinations of the above generators:

Gµν , Gµ,4 =
1

2
(Pµ +Kµ), G−1,µ =

1

2
(Pµ −Kµ), G−1,4 = D,

where the Gµν of GAB remain generators of Lorentz algebra l0. Remarkably, the Lie

bracket relations simplify to the following:

[GAB,GAC ] = ηAAGBC or = 0 if all indices different, (5.2)

where ηAB = diag(1, 1,−1,−1,−1,−1). The 15 generators GAB form a Lie algebra

isomorphic to that of the pseudo-orthogonal Lie group SO(2, 4)! Let us consider XA ∈
R2,4, where SO(2, 4) acts linearly on R2,4. Then the 15 generators/vector fields GAB can

be written as

GAB = XB∂A −XA∂B, (5.3)

spanning the Lie algebra of SO(2, 4). Since the generators of the Lie algebras c(1, 3)

and so(2, 4) are related only by the change of basis in the subspace spanned by Pµ and

Kµ, the groups C(1, 3) and SO(2, 4) are locally isomorphic. In fact, SO(2, 4) is globally

a double cover of C(1, 3), i.e. C(1, 3) = SO(2, 4)/Z2. That is, the neighborhood of both

I and −I of SO(2, 4) look locally like the neighborhood of I of C(1, 3), where I is the

identity element. Needless to say, it is more productive to consider the space R2,4 on

which SO(2, 4) and C(1, 3) act linearly.

5.2 The Compactified Minkowski Space

As noted in the above, the compactification of Minkowski space regularizes the conformal

transformations by adding a null cone at the infinity. The action of SO(2, 4) on R2,4

preserves the null cone N , defined as

N = {X ∈ R2,4 : η(X,X) = 0}.

Let us define M as the manifold of null unoriented rays through the origin of R2,4. The

action of SO(2, 4) on M is transitive; that is, there exists an element of SO(2, 4) that

carries a point m ∈M to any other point m′ ∈M for all m. But how does this relate to

adding a null cone at the infinity? Let us split R2,4 as follows: R2,4 = R1,1 ⊕ R1,3. We

can also split X ∈ R2,4 into X = X(1,1) +X(1,3), where X(1,1) ∈ R1,1 of indices −1,4 and

X(1,3) ∈ R1,3 of indices 0, 1, 2, 3. If X belongs to the null cone N , i.e. η(X,X) = 0, then

η(X(1,3), X(1,3)) = −η(X(1,1), X(1,1)) = constant,
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Figure 5.1: Null cone of R2,4 and its conformally-related cross-sections

where the norms yield the equations for hyperboloids H3 and H1 for nonzero constant.

The same unoriented ray is associated with both X and −X, so this gives us a manifold

M homeomorphic to (H1 ×H3)/Z2. The H3 is an invariant manifold under the action

SO(1, 3) on Minkowski space M0 = R1,3, so the presence of H1 with negative of the

norm of H3 forms the compactified Minkowski space M . If we take η(X(1,3), X(1,3)) = 0

and η(X(1,1), X(1,1)) = 0, the compactified Minkowski space M can be interpreted as the

addition of a null cone at the infinity of the Minkowski null cone. It is also easy to show

that M is homeomorphic to (S1 × S3)/Z2 by similar means, to demonstrate that M is

indeed compact.4

The compactification is nice from a mathematical perspective, but we would like to

retrieve the physical phase manifolds for various energies seen in the Moser method of

Ch. 2. To do this, define M̃ as the manifold of oriented null lines through the origin of

R2,4. Equipped with an orientation, it is a double cover of M , i.e. M = M̃/Z2. Let us

choose a 5-dimensional submanifold of R2,4 intersecting the 5-dimensional null cone N at

most once. Note that dim M̃ = 4, obtained by subtracting the dimension of the null rays

themselves from dimN . The intersection gives us a map γ : M̃ →Mγ , where Mγ is the

cross-section between the submanifold and N . It also holds that dimMγ = 4, suggesting

its description in terms of the coordinates on the manifold H1 × H3, where H3 is the

manifold seen in the scattering case of the Moser method. We will explicitly calculate

the expression of Mγ for various energies in the subsequent sections. It is possible to

prove that the cross-sections Mγ are all conformally related to the Minkowski space M0,

such that the metric tensor on Mγ only differs from the Minkowski metric ηµν by a non-

vanishing function w2(x) for all x ∈ Mγ . Thus, M̃ and M are endowed with a whole

class of metrics whose elements are all conformally related. Two conformally related

cross sections Mγ and Mγ′ are depicted in Fig. 5.1.

4Typically, it is shown in the literature that M is homeomorphic to (S1 × S3)/Z2, We have shown
the homeomorphism to (H1 ×H3)/Z2 instead for the following reasons: (1) we seek to make the global
topology of the compactified Minkowski space M more intuitive in relation to the Minkowski space M0

and (2) we are primarily concerned with the positive energy case, where we have established the duality.
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While it is SO(2, 4) that induces the automorphism (self-map) of M̃ , the mod

Z2 in the double cover relation C(1, 3) = SO(2, 4)/Z2 necessitates the irrelevance of

the orientation of the null rays on the manifold on which C(1, 3) acts. Thus, we can

take C(1, 3) to induce the automorphism of M . The following commutative diagram

illustrates the relationships of objects presented in this section:

where π : M̃ →M is a 2-1 projection from oriented to unoriented null lines.

5.3 The Moment Map

The action of Lie group G on the phase manifold T ∗M induces a map from its Lie

algebra g to a vector field on T ∗M . That is, L 7→ ξL where L is an element of g and

ξL is the vector field corresponding to L. This is seen in Eq. (5.4), where the words

“generators” and “vector fields” have been used interchangeably. On the other hand, a

smooth function f ∈ C∞(T ∗M)5 induces a vector field on the cotangent bundle T ∗M

through the following expression introduced in Ch. 3:

ξf = {·, f} =
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi
, (5.4)

where {·, ·} is the Poisson bracket. If ξL = ξf , it is useful to define the map that takes

an element L ∈ g to the corresponding smooth function µL = f ∈ C∞(T ∗M). The

map that induces this is called the moment map [19, 20]. The moment map acts on

the symmetry generator L to give the function µL, and can thus be understood as the

Hamiltonian (and arguably a more elegant) version of the Noether theorem.6

Let us first present some definitions which will be useful in defining the moment

map. A bivector of a (pseudo-)Riemannian manifold is an antisymmetric tensor of

5C∞(T ∗M) is the space of smooth functions on T ∗M .
6Notice that the moment map is not an isomorphism between L and f = µL, since f + C where C

is a constant will give the same vector field ξf due to the derivative in the Poisson bracket.
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order 2 (2-form). If a bivector can be expressed as the exterior (wedge) product of two

vectors Y and X, it is called a simple bivector Y ∧ X. In component form, a simple

bivector can be expressed as (Y ∧X)AB = YAXB−YBXA. Let us consider the manifold

S of null simple bivectors G of R2,4 defined

S = {G = Y ∧X : 0 6= X,Y ∈ R2,4, η(G,G) = 0}.

Since we restricted ourselves to X,Y 6= 0 above, we will hereafter consider T+M , the

cotangent bundle T ∗M minus the zero section, instead of T ∗M . Let us find dimS.

The vectors X and Y together contribute dimR2,4 ⊕ R2,4 = 12 dimensions. The nullity

condition

η(X,X)η(Y, Y )− η2(X,Y ) = 0.

provides 1 constraint. The map X,Y 7→ X∧Y is not one-to-one, since any set of vectors

differing from X,Y by the action of the group SL(2,R) also maps to X ∧ Y . That is,

given vectors X ′, Y ′ such that(
X ′

Y ′

)
=

(
a b

c d

)(
X

Y

)
, ad− bc = 1, a, b, c, d ∈ R,

it holds that X ′∧Y ′ = X ∧Y . The determinant condition allows matrix representations

of SL(2,R) to be specified by 3 real parameters, providing 3 more constraints. Hence,

dimS = 12− 1− 3 = 8,

which is the number of dimensions expected for the cotangent bundle T+M , since

dimM = 4. Indeed, we can show that S is homeomorphic to T+M , but we will not

prove this here. The vectors X,Y ∈ S can now be interpreted as coordinates on the

phase manifold T+M , and thus η(X,X) = η(X,Y ) = 0.

Given the phase manifold T+M with symmetry group G such that G : T+M →
T+M , we can define the moment map

µ : T+M → g∗,

where g∗ is the dual algebra of the Lie algebra g of G. With G = C(1, 3), the explicit

form of the moment map is

µ =
∑
A<B

GABG∗AB =
∑
A<B

(YAXB − YBXA)G∗AB, (5.5)

where G is the bivector of coordinates on T+M such that η(G,G) = 0, and G∗AB are
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the dual generators of c∗(1, 3).7 We can act G∗AB on the corresponding generators GAB
of c(1, 3) such that the pairing gives 〈G∗AB,GA′B′〉 = 1 for identical indices AB = A′B′.

The desired map µL : g→ C∞(T+M) for L ∈ c(1, 3) is defined as follows:

µL = 〈µ,L〉. (5.6)

We send L ∈ g to its corresponding smooth function µL ∈ C∞(T+M), which can

be decomposed as a linear combination of the bivector components GAB = YAXB −
YBXA. Since T+M is symmetric under C(1, 3), µL are conserved functions on T+M

corresponding to the symmetry generated by L. Note that if we only choose elements

L of the Lie algebra c(1, 3) that coincide with the generators GAB of c(1, 3), we get

µL = GAB for L = GAB. Hence, when we act the moment map µ on GAB, we are

projecting out the conserved quantities GAB of Eq. (5.5).

In Chapter 2, we claimed that smooth functions f = µL on T+M are the generators

of the Lie algebra g. In this section, we have made this statement more rigorous via

the action of the moment map L 7→ µL, which reveals the relationship between the the

element of g generating a symmetry and its corresponding integral of motion. Due to

this correspondence, which is unique up to an additive constant on the function, the

Poisson algebra of the conserved quantities,

{GAB, GAC} = ηAAGBC or = 0 if all indices different,

is isomorphic to the Lie algebra of the conformal group,

[GAB,GAC ] = ηAAGBC or = 0 if all indices different.

5.4 Connection to Moser Method

The Moser method, presented in Chapter 3, demonstrates the equivalence of the Kepler

problem to the geodesic flow on a 3-manifold. The geodesic flow gave us a more nat-

ural Hamiltonian J that regularizes the Kepler problem, and we derived the canonical

transformation between the cotangent bundle of the 3-manifold and the phase space of

the Kepler problem. We show in this section that the Hamiltonian J and the canonical

transformations can be elegantly derived using the moment map. The negative and

positive energy cases are treated in a unified picture, where they are simply different

cross-sections Mγ of the null cone N ∈ R2,4. Remarkably, the conformal symmetry gives

7Although SO(2, 4) is globally a double cover of C(1, 3), it holds that so(2, 4) = c(1, 3), since Lie
algebras are defined locally in the neighborhood of the identity element. Therefore, G∗AB are generators
of both so∗(2, 4) and c∗(1, 3).
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an extended phase manifold of the Kepler problem, where some group-geometric prop-

erties of the Kepler-Lorentz duality seem to be in common with those of gauge-gravity

duality.

5.4.1 The Pullback

To retrieve the cotangent bundle of the 3-manifold on which the Kepler problem is

equivalent to the geodesic flow, we consider different cross sections Mγ of the null cone

N ∈ R2,4. The 4-dimensional submanifolds Mγ have metric tensors that are related to

the ambient metric ηAB = diag(1, 1,−1,−1,−1,−1) via

(gγ)µν =
∂XA

∂xµ
∂XB

∂xν
ηAB, (5.7)

where xµ,yµ are canonical coordinates on T+Mγ and XA = XA(xµ) ∈ N are vectors

on the section Mγ such that η(X,X) = 0. We still need to find the covectors YA =

YA(xµ, yν) on the cotangent bundle. From differential geometry, we are guaranteed the

map γ∗ : T+Mγ → T+N taking yµ 7→ YA if we have the map γ : N → Mγ taking

XA 7→ xµ [13, 21].8 The map γ∗ is called the pullback. In words, the pullback maps

a covector on the cotangent bundle of the target manifold back to a covector on the

cotangent bundle of the initial manifold, given that we have a map from the initial

manifold to the target manifold. The following commutative diagram illustrates the

idea:

where πN and πMγ are the projection maps from the cotangent bundle to the base

manifold. For the pullback, let us take

YB(xµ, yν) = (gγ)µν
∂XA

∂xµ
ηAByν , (5.8)

which is indeed the simplest map consistent with the index notation that takes yν to

YA.9 Now that we have the construction for the covectors YA given γ, we can finally

8The pullback is actually defined at a cotangent space at a particular point of the base manifold. We
ease the notation and make this implicit.

9One can also obtain the push-forward map γ∗ : TN → TMγ of the tangent bundles taking
V A 7→ vµ where V A ∈ TN and vµ ∈ TMγ and check that the projection constraint V AYA = vµyµ is
satisfied. This verifies Eq. (5.8) but we will not do this here.



Conformal Symmetry and Twistor Theory 54

write the function

GAB(xµ, yν) = YAXB − YBXA, (5.9)

associated with the moment map µ : T+Mγ → c∗(1, 3) defined in Eq. (5.5).

With this, let us retrieve the Minkowski space M0. Intersecting the null cone N ,

given explicitly by

(X−1)2 + (X0)2 − (X1)2 − (X2)2 − (X3)2 − (X4)2 = 0, (5.10)

with the hyperplane X−1 +X4 = 1, we obtain the section

X−1 =
1

2
(1 + ηµνx

µxν)

X0 = x0

Xi = xk

X4 =
1

2
(1− ηµνxµxν).

The metric of the section, obtained via Eq. (5.7), is gµν = diag(1,−1,−1,−1), which is

the metric of the Minkowski space M0. The pullback in Eq. (5.8) gives us

Y−1 = −xµyµ

Y0 = y0

Yi = yk

Y4 = −xµyµ.

Then, we can find from Eq. (5.9) the moment map coefficients

Gµν = xνyµ − xµyν

Pµ = yµ

Kµ = 2xµx
νyν − xνxνyµ

D = xµyµ,

(5.11)

where Pµ = Gµ,4, Kµ = G−1,µ, and D = G−1,4.10 Comparing Eq. (5.11) with the

generators of c(1, 3) in Sec. 5.1, we again confirm the correspondence between the Lie

algebra generators and smooth functions on the cotangent bundle. Note, however, that

under the Kepler-Lorentz duality, this space is not the Minkowski spacetime but rather

the energy-momentum space with the Minkowski metric.

10This assignment of GAB to functions Pµ and Kµ is different from the assignment seen for the
generators of so(2, 4) in Sec. 5.1. In Sec. 5.1, we changed the basis to yield the simple Lie bracket
relations in Eq. (5.2), but here we consider the GAB before changing the basis.
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5.4.2 Retrieving the Moser Method

Given the moment map and the pullback, it is now rather straightforward to obtain

the cross sections for negative and positive energy Kepler problems [2]. In the negative

energy (bound, attractive) case, we intersect the null cone N in Eq. (5.10) with the

hypersphere ∑
A

(XA)2 = 2.

The cross section is given by

X−1 = cosx0

X0 = sinx0

Xi =
2xi

x2 + 1

X4 =
x2 − 1

x2 + 1
,

where we have expressed Xi, X4 in the stereographic coordinates of S3 seen in the Moser

method. Note that the coordinates X−1, X0 form S1. This confirms our claim in Sec.

5.2 that M is homeomorphic to (S1×S3)/Z2. The pullback and the metric of the section

is

Y−1 = −y0 sinx0

Y0 = y0 cosx0

Yi =
1

2
(x2 + 1)yi − (x, y)xi

Y4 = (x, y)

and

(g−)µνyµyν = y2
0 −

[1

2
y(x2 + 1)

]2
.

The expressions of Xi, X4 and Yi, Y4 correspond to that obtained in the Moser method

in Chapter 3. The coordinates XA, YA are parametrized by xµ, yµ, which spans 8

dimensions as required by dimS = 8. Also, the term in the square bracket of (g−)µν is

the metric on S3 in stereographic coordinates.

In the positive energy (scattering, repulsive) case, we intersect the null cone N with

the hyperboloid

(X−1)2 − (X0)2 − (X1)2 − (X2)2 − (X3)2 + (X4)2 = 1.
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The cross section is given by

X−1 =
x2 + 1

x2 − 1

X0 = sinhx0

Xi =
2xi

x2 − 1

X4 = coshx0.

We have expressed X−1, Xi in the stereographic coordinates of H3 seen in the Moser

method. The coordinates X0, X4 indeed form H1, and we confirm our claim in Sec. 5.2

that M is homeomorphic to (H1 ×H3)/Z2. The pullback and the metric gives

Y−1 = (x, y)

Y0 = y0 coshx0

Yi =
1

2
(x2 − 1)yi − (x, y)xi

Y4 = −y0 sinhx0

and

(g+)µνyµyν = y2
0 −

[1

2
y(x2 − 1)

]2
,

as in the Moser method. The term in the square bracket of (g+)µν is the metric on

H3 in stereographic coordinates. Though we have not treated the attractive scattering

case, its results are easy to obtain from the repulsive scattering problem. Recall that

the repulsive problem occurs inside the Poincaré ball P while the attractive problem

occurs outside P. Thus, the results for the attractive case is found simply by inverting

the stereographic coordinate, i.e. xi 7→ xi

x2
.

Notice that in the metric, the term in square brackets is also related to the new

Hamiltonians J(−) and J(+) of the Moser method for bound and scattering states. By

the metric relation, y0 is also related to the Hamiltonians and thus the energy. Hence,

not only do we retrieve the Moser method involving the coordinates xi, yi spanning 6

dimensions but we also naturally get an enlarged phase manifold, where we see quantities

related to energy and time, y0 and x0, treated on an equal footing with coordinates and

conjugate momenta, xi and yi. This is why we have an enlarged phase space of 8,

rather than 6, dimensions. One may worry that, in the enlarged picture, we should

define another Hamiltonian to describe the evolution of the enlarged phase manifold.

However, the dynamics of canonical coordinates that treat energy and time on an equal

footing are typically described in the covariant formulation of Hamilton-Jacobi theory.

Here, one considers the Hamilton function S = S(xµ) with an affine evolution parameter

τ . We will come back to the enlarged picture in a moment to describe its geometric
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consequences via the Kepler-Lorentz duality.

In using the moment map to construct functions on the phase manifold, let us

reduce ourselves to the canonical coordinates xi, yi spanning 6-dimensions to treat the

problem in Hamiltonian mechanics. We assert here without proof that the 6-dimensional

submanifold of T+M given by the nullity condition of the metric,

(gγ)µνyµyν = 0,

modulo H1 or S1, which we denote T+
0 M/H1 or T+

0 M/S1, is homeomorphic to T+H3

or T+S3, respectively [2]. Let us reduce our 8-dimensional cotangent bundle as such.

The metric nullity condition alone yields the 7-dimensional submanifold T+
0 M and gives

for the energy

y0 = J(+)(x
i, yi) =

1

2
y(x2 − 1)

for the repulsive scattering problem and

y0 = −J(−)(x
i, yi) = −1

2
y(x2 + 1)

for the bound problem. The Hamiltonians J+ and J− defined in this section differs

from that seen in the Moser method by a constant, but this should not matter since

the constant nevertheless vanishes under the derivative in Hamilton’s equations. If we

wanted, we could have chosen the Hamiltonians to be the same as those in Chapter 3.

From the Hamiltonians, calculating Hamilton’s equations is straightforward

dxi

dx0
= ∓

∂J(±)

∂yi
,

dyi
dx0

= ±
∂J(±)

∂xi
, (5.12)

where we take the upper sign for repulsive scattering and the lower sign for the bound

problem. Now, x0 is just an evolution parameter corresponding to the Hamiltonians and

parametrizes H1 and S1 in the respective cases. We can mod out H1 or S1 from T+
0 M by

fixing any value for x0. Fixing x0 = 0, we get T+
0 M/H1 and T+

0 M/S1 homeomorphic

to T+H3 and T+S3, respectively, which are cotangent bundles on which the Kepler

problem are geodesic flows. We insert XA, YA from the positive and negative energy

results to get the functions in Eq. (5.9) of the moment map µ : T+H3 → c∗(1, 3) and
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µ : T+S3 → c∗(1, 3)

G−1,0 = ±1

2
y(x2 + 1)

Gij = yixj − yjxi

G0,i = ±yxi

G−1,i =
1

2
(x2 + 1)yi − (x, y)xi

Gi,4 =
1

2
(x2 − 1)yi − (x, y)xi

G−1,4 = (x, y)

G0,4 = ±1

2
y(x2 − 1).

(5.13)

There is a canonical transformation taking (xi, yj , x
0, y0) to the physical variables (qi, pj , t, pt)

of the Kepler problem. Though canonical transformation, it is possible to derive the Ke-

pler Hamiltonian and show the equivalence of moment map functions in Eq. (5.13) and

conserved physical quantities such as angular momentum and the LRL vector [2].

5.4.3 A Note on Geometry

The enlarged phase manifold T+M(+) '
T+(H1×H3)

Z2
of the scattering-state Kepler prob-

lem has an interesting geometry under stereographic projection. We have seen in Chap-

ter 4 that both 4-momenta and 4-position of the scattering Kepler problem obey the

invariance relation preserving H3. Thus, the embedding spaces of H3’s for position and

conjugate momenta have the same Minkowskian geometry R1,3. It follows that, whether

we interpret it as the enlarged coordinate space or momentum space, the geometry of

the manifold M(+) ' H1×H3

Z2
is the same. We treat the momentum space here. As we

know from Fock and Moser, the stereographic projection of H3 gives the Poincaré 3-ball

P, on which the physical momentum space curves of the scattering Kepler problem are

geodesics starting and ending at the boundary. We also know that, topologically, H1

is homeomorphic to R1. We thus have the homeomorphism M(+) ' R1×P
Z2

. That is,

in the embedding momentum space R1,3 of the scattering-state Kepler problem, we are

performing a stereographic projection of each of the H3 submanifolds within the future

null cone across varying energies and stacking them on top of each other. It is a curious

fact that the result is a cylinder R1 × P with conformal boundary, where the coordi-

nates on the P are the physical momenta pi and the coordinate along the length of the

cylinder is the energy. In the momentum space of relativity related to the above by

the Kepler-Lorentz duality, we obtain a similar hyperbolic cylinder performing a stere-

ographic projection of each mass-shell and stacking them on top of each other. This is

an alternative picture of the volume inside the future light cone.
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As a final note, we discuss the Kepler-Lorentz duality in the light of recent connec-

tions between the symmetries of the Kepler problem and that of a maximally supersym-

metric quantum field theory. In Ref. [22], the authors show that a relativistic quantum

field theoretic extension of the dynamical (LRL) symmetry of the Kepler problem is

the dual conformal symmetry in the momentum space of planar N = 4 supersymmetric

Yang-Mills (SYM) theory. Though the authors only consider hydrogenic bound states of

the Kepler problem with the symmetry group SO(4), the sign of the coupling constant

can be reversed to obtain canonical transformations corresponding to that of the scat-

tering states with the symmetry group SO(1, 3). Indeed, we obtained in the previous

section both the bound and scattering states of the Kepler problem by taking various

cross-sections of the null cone in R2,4. In our construction in Chapter 4, we showed the

equivalence of the momentum space of the scattering state Kepler problem and that of

relativistic free particle in Minkowski spacetime, which are both symmetric under the

Lorentz group SO(1, 3). If the high-energy analogue of the Kepler problem is the planar

N = 4 SYM with dual conformal symmetry, is there a such an analogue of the flat

Minkowski spacetime?

The AdS/CFT correspondence (or gauge-gravity duality), originally formulated in

the context of string theory, is the conjecture of a duality between quantum gravity in

(d + 1)-dimensions and quantum field theory at its d-dimensional conformal boundary

in the large N limit of SU(N) gauge theories [23–25]. The most well-studied case of

this duality is between the 5-dimensional anti-de Sitter (AdS5) space and the N = 4

super Yang-Mills theory in four dimensions (CFT4). AdS5 is defined as a generalized

hyperboloid embedded in R2,4 and has the special property that, for a fixed-time spatial

section, the ratio of its volume to the area of its boundary approaches a constant as

one considers the entire section. Constrained at the conformal spatial boundary of (a

cover of) AdS5, the metric becomes that the 4-dimensional flat Minkowski spacetime of

CFT4.

There are a couple of qualitative features which suggest that a connection be-

tween the Kepler-Lorentz duality and gauge-gravity duality is not unreasonable: (1)

They share the same symmetry groups. The isometry/conformal groups of AdS5/CFT4

and the (extended symmetry of) Kepler-Lorentz duality are both SO(2, 4). While the

compactified Minkowski is the space of rays in the null cone of R2,4, AdS5 is a hyper-

boloid in R2,4 which approaches the null cone as one takes the spatial coordinates to

infinity. (2) In our construction of the Kepler-Lorentz duality, the scattering state Ke-

pler problem represents a 1-dimensional reduction from relativistic kinematics via the

isomorphism between geodesics (momentum space orbits) and their points of symmetry

on the Poincaré 3-ball P. That is, in the Kepler problem, we suppress its time dimen-

sion by considering the transformations of static orbits rather than of particles moving
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with respect to time. Hence, we get a (d+ 1)-dimensional spacetime kinematics from a

d-dimensional scattering state Kepler problem.

If such a connection between the Kepler-Lorentz duality and gauge-gravity duality

exists, it would be a remarkable example of a case where deep relationships in physics

at the highest energy scales, where all particles travel at the speed of light, are realized

even at the classical scales that are readily available to our senses. We hope that some

of the accessible insights gained through the integrable structure of the two systems

involved in the Kepler-Lorentz duality finds its use for gauge-gravity duality. This is a

point of future investigation.

5.5 SU(2,2) and Twistors

It is well known that the Lorentz group SO(1, 3), which acts on 4-vectors, is doubly

covered by the Möbius group SL(2,C), which acts on spinors. One obtains spinors by

expressing the 4-vector in a Hermitian form as a linear combination of Pauli matrices σµ

and taking the “square root” to express the Hermitian matrix as a outer product of two

spinors in C2. There is a conformal symmetry analogue of this relationship, as depicted

in Fig. 1.1. The group SO(2, 4), which acts on “6-vectors” spanning four dimensions

as seen in our retrieval of the Moser method, is doubly covered by the group SU(2, 2),

which acts on twistors. Twistors, which can be understood as the higher dimensional

analogue of spinors, belong in the space C2,2 and are composed of two spinors [2, 18].11

It turns out, twistors and 6-vectors can be related by the Kustaanheimo-Stiefel map

under stereographic coordinates. In this section, we will present the generators of the

Lie algebra of SU(2, 2) for our choice of basis and introduce basic properties of twistors

required to obtain the Kustaanheimo-Stiefel map. Instead of using the spinor index

notation, we use the matrix notation in the mathematical physics literature following

[2].

5.5.1 Generators of su(2,2)

In our choice of the basis in su(2, 2), the Lie algebra of SU(2, 2), it may seem natural

to choose the quadratic form

H =

(
11 0

0 −11

)
.

due to the signature of the group SU(2, 2). Recall that the Lie algebra of (pseudo)unitary

groups have (skew-)Hermitian elements, since the exponential of Hermitian matrices map

to unitary matrices. Also, since the elements of special unitary groups have determinant

1, the elements of the corresponding algebra have trace 0 also via the exponential map.

11This property makes it sound like a Dirac spinor composed of two Weyl spinors, but spinors in a
twistor are related in a nontrivial way unlike in a Dirac spinor.
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For the generators GAB of su(2, 2) under the form H, the following relations are then

satisfied:

G†ABH + HGAB = 0, Tr GAB = 0,

where the dagger † denotes the Hermitian adjoint. The first equation is the condition

that generators with diagonal matrix elements are skew-Hermitian, while those with

anti-diagonal elements are Hermitian. The generators GAB also satisfy the Lie bracket

relations

[GAB,GAC ] = ηAAGBC or = 0 if all indices different,

similar to the generators GAB of so(2, 4) in Eq. (5.2), and the two algebras are in fact

isomorphic.

It is, however, more useful to consider the block-diagonal form h related to H by

the transformation matrix

T =
1√
2

(
11 11

11 −11

)
such that

H 7→ h = (T†)−1H(T)−1 =

(
0 11

11 0

)
(5.14)

and

GAB 7→ gAB = TGABT−1.

The transformation takes us from the conformal extension of the Dirac basis to that

of the Weyl basis of gamma matrices, as in the treatment of fermions in quantum field

theory. The inner product (·, ·) is then defined

(ϕ,ψ) = ϕ†hψ,

where ϕ,ψ ∈ C2,2. It is also easy to prove from the relations above that

g†ABh + hgAB = 0, Tr gAB = 0, (5.15)

as was the case for GAB. Let σi be the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

which, together with the identity matrix, form the basis of 2 × 2 Hermitian matrices.

We can now choose the 15 generators gAB of su(2, 2) that satisfy Eq. (5.15) with the
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block-diagonal form h:

gjk =
1

2

(
−σjσk 0

0 −σjσk

)
, g0j =

1

2

(
−σj 0

0 σj

)
,

g−1,4 =
1

2

(
11 0

0 −11

)
,

g0,4 =
1

2

(
0 i11

−i11 0

)
, gj,4 =

1

2

(
0 iσj

iσj 0

)
,

g−1,0 =
1

2

(
0 i11

i11 0

)
, g−1,j =

1

2

(
0 iσj

−iσj 0

)
.

They are conformal generators obtained via commutation relations of the conformal

extension of the Weyl basis.

5.5.2 Twistors and Moment Map

We now introduce twistors [18]. An element ψ ∈ C2,2 such that

(ψ,ψ) = ψ†hψ = 0

are called null twistors. Let us denote the space of null twistors as T0. We assume the

equivalence relation ψ ∼ ψeiφ with respect to a phase angle φ. Then, T0/ ∼, the space of

null twistors modulo a phase transformation, is a 6 dimensional manifold. The manifold

T0/ ∼ can be given the symplectic structure ω = dθ, where the canonical 1-form is

θ = Im(ψ, dψ). (5.16)

We will show in the next section that, given the relation between the two spinors in

a twistor, that this is indeed the canonical 1-form providing the canonical transforma-

tion between the twistor and stereographic variables. Let us investigate how twistors

transform under the action of SU(2, 2). In analogy to spinors, which transform like

ξ 7→ ξ′ = uξ for ξ ∈ C2 and g ∈ SL(2,C), twistors transform under the action of

SU(2, 2) like

ψ 7→ ψ′ = gψ, (5.17)

for g ∈ SU(2, 2). Recall that spinors were obtained by (1) mapping a 4-vector to a 2× 2

Hermitian matrix and (2) expressing the matrix as an outer product of two spinors in

C2. If the determinant of the Hermitian matrix is 0, one can express the matrix of rank

1 as an outer product of two identical spinors. Similarly, the outer products of twistors
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form an object of relevance. Let us define such an object

µ(ψ) = −iψψ†h, with ψ†hψ = 0, (5.18)

where presence of terms aside from the outer product ψψ† will be clarified in a moment.

Note the following properties of µ(ψ):

i µ(ψ) satisfies

µ†(ψ)h + hµ(ψ) = 0, Tr µ(ψ) = −iψ†hψ = 1,

as do the generators gAB in Eq. (5.15), so we have µ(ψ) ∈ su(2, 2). But it happens

that the generators g∗AB of the dual algebra su∗(2, 2) can be found from gAB by

simply changing the sign of the generators of noncompact transformations. Hence,

su(2, 2) = su∗(2, 2) and it follows that µ(ψ) ∈ su∗(2, 2). Therefore, µ(ψ) is the

moment map µ : T0/ ∼→ su∗(2, 2)! Since we took T0/ ∼ as the domain, the choice

of a phase is modded out and the moment map µ(ψ) is thus one-to-one.

ii µ(ψ) transforms under SU(2, 2) like the Hermitian form of the 4-vector transforms

under SL(2,C). If g ∈ SU(2, 2), we have g†hg = h which preserves the metric by

definition. Then, it follows that g−1 = h−1g†h and so µ(ψ) transforms as

µ 7→ µ′ = gµg−1 = −igψψ†hh−1g†h = −i(gψ)(gψ)†h.

That is, the action of SU(2, 2) splits into simpler actions on each null twistor

ψ while preserving the general form of the original expression of µ(ψ). This is

analogous to the case of spinors, where the action of SL(2,C) splits into simpler

actions on each null spinor ψ.

The moment map µ(ψ) can be decomposed in terms of the generators g∗AB. The

coefficients of the generators will give us the smooth functions on T0/ ∼. We will make

use of this property in the following section.

5.6 Connection to Kustaanheimo-Stiefel Method

It turns out, null twistors in C2,2 and 6-vectors in R2,4 can be related by the Kustaanheimo-

Stiefel map [2, 14]. Recall from Sec. 5.3 and 5.4 that the dimensions of manifold S of

null simple bivectors is only 8, not 12, so the cotangent bundle T+Mγ of cross sections

at various energies were expressible in terms of the canonical coordinates xµ and yµ

in place of XA and YA. This was further reduced by choosing the nullity condition

(gγ)µνyµyν = 0, which is preserved under the conformal action. This allowed us to ex-

press y0, interpreted now as the Hamiltonian, in terms of xi and yi and to fix an arbitrary
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value for the evolution parameter x0. We have left xi and yi, which are in fact canonical

coordinates on the phase space of the Kepler problem T+R3. In this section, we present

the Kustaanheimo-Stiefel map and its inverse relating the space of null twistors T0/ ∼
to the phase space of the Kepler problem T+R3. The Kustaanheimo-Stiefel map shows

the equivalence of the 3d Kepler problem and the 4d harmonic oscillator, for both bound

and scattering states.

5.6.1 Inverse Map

Let us define two Hermitian matrices

x = xiσi =

(
x3 x1 − ix2

x1 + ix2 −x3

)
(5.19)

y = y11 + yiσ
i =

(
y + y3 y1 − iy2

y1 + iy2 y − y3

)
, (5.20)

where y =
√
yiyi and xi and yi are canonical coordinates on T+R3. Since the determi-

nant of y is 0, we can express y as the outer product of two identical spinors ξ = ξ(yi):

y = ξ(yi)ξ
†(yi).

Let us take a generic null twistor

ψ =

(
z

iw

)
, z 6= 0 (5.21)

where z, w ∈ C2 are each spinors. In what is called the incidence relation in twistor

theory [18], z and w are related by a Hermitian matrix. If we take z = ξ(yi) and

w = xξ(yi), we have the map ψ(xi, yi) : T+R3 → T0/ ∼, given by

ψ(xi, yi) =

(
ξ(yi)

ixξ(yi)

)
. (5.22)

This is the inverse Kustaanheimo-Stiefel map. One can verify this by checking that one

gets the identity when substituted into the forward map, which we will obtain shortly.

Before proceeding, let us check that the canonical 1-forms of T0/ ∼ and T+R3 are

equal to show that the map is indeed a canonical transformation or, equivalently in the

mathematical physics literature, a symplectomorphism. That is, now that we know

about the pullback map, we check that the pullback ψ∗ of the canonical 1-form θ in Eq.
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(5.16) gives us the 1-form yidx
i:

ψ∗θ = Im

[(
ξ† −iξ†x

)(0 11

11 0

)(
dξ

idxξ + ixdξ

)]
= ξ†dxξ = Trydx = yidx

i. X

It it worthwhile to mention that the use of stereographic coordinates in the Hermi-

tian matrix x of the incidence relation, as in Eq. (5.19), is unconventional in the context

of twistor theory. Instead of using stereographic coordinates in R3, it is typical to let

x be the Hermitian representation of a spacetime 4-vector in the flat Minkowski space

R1,3. If one can somehow limit the 4-vectors to the invariant submanifold H3 of R1,3,

it is possible to take stereographic coordinates in R3 to get the Kustaanheimo-Stiefel

map as we have done above. In the spirit of the Moser method, this is done here by

obtaining x in the momentum space, where x1, x2, x3 ∈ R3 are coordinates obtained via

a stereographic projection of the invariant mass shell H3. We will in fact perform a

canonical exchange between xi and yi in the following section.

5.6.2 Kustaanheimo-Stiefel Map

Let us take a generic form of a null twistor in Eq. (5.21). Then, the moment map µ(ψ)

in Eq. (5.18) becomes

µ(z, w) =

(
zw† izz†

iww† −wz†

)
. (5.23)

Recall that moment maps act on generators of a symmetry and yields smooth functions

on the phase manifold, given that the phase manifold is preserved under such symmetry.

Let us take the moment map µ : T0/ ∼→ su∗(2, 2) given by

µ(z, w) =
∑
A<B

gAB(z, w)g∗AB (5.24)

where gAB(z, w) are functions on T0/ ∼ and the moment map ν : T+R3 → su∗(2, 2)

given by

ν(xi, yi) =
∑
A<B

GAB(xi, yi)g
∗
AB (5.25)

where GAB(xi, yi) are functions on T+R3 obtained in Eq. (5.13). Comparing the

functions gAB(z, w) and GAB(xi, yi), we can retrieve the Kustaanheimo-Stiefel map

K : T0/ ∼→ T+R3 seen in Chapter 3.
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To find the functions gAB(z, w), let us project the moment map µ(ψ) = −iψψ†h
on to the basis g∗AB of Eq. (5.24). If we multiply the relation

∑
A<B

gAB(z, w)g∗AB = −iψψ†h

to the right by gCD and take the trace, we get

gAB(z, w) = iTr ψψ†hgAB = iψ†hgABψ.

Explicitly,

g−1,0 = −1

2
(z†z + w†w)

gij = Re(z†σiσjw)

g0i = −Re(z†σiw)

g−1,i =
1

2
(z†σiz − w†σiw)

gi4 = −1

2
(z†σiz + w†σiw)

g−1,4 = Re(z†w)

g0,4 =
1

2
(z†z − w†w).

(5.26)

Comparing gAB(z, w) with GAB(xi, yi), taking the upper sign for the scattering problem

and the lower sign for the bound problem, we have

−Gi4 +G−1,i = yi, −gk4 + g−1,i = z†σiz,

thus

yi = z†σiz, y = z†z. (5.27)

Comparing also

G0i = ±yxi g0k = −Re(z†σiw),

we have

xi =
∓Re(z†σiw)

z†z
. (5.28)

If we insert

z =

(
z1 + iz2

z3 + iz4

)
, w =

(
w1 + iw2

w3 + iw4

)
, z1, · · · , w4 ∈ R

and perform a canonical exchange between coordinates and momenta

xi → −yi, yj → xj ,



Conformal Symmetry and Twistor Theory 67

Eqs. (5.26) and (5.27) give the Kustaanheimo-Stiefel map R : T0/ ∼→ T+R3 for the

scattering and bound problems, respectively. The constraint of the domain variables

in Eq. (3.23) comes simply from the null twistor condition, which can be worked out

directly from the inverse map K−1. The 1-dimensional kernel follows from the equiva-

lence relation ψ ∼ ψeiφ. Since the Kustaanheimo-Stiefel map in the attractive case is

the canonical extension of the Hopf map S3 S1

−→ S2, the kernel is indeed the equivalence

relation of the elements of the S1 fiber attached to S2. One obtains the Hamiltonian for

the respective problems by comparing G0,4 with g0,4 and G−1,0 with g−1,0, taking appro-

priate signs. Recalling that the regularized Hamiltonians take the form J(+) = 1
2y(x2−1)

in the scattering case and that J(−) = 1
2y(x2 + 1) in the bound case, we find

J(+)(z, w) =
1

2
(|z|2 − |w|2),

J(−)(z, w) =
1

2
(|z|2 + |w|2).

(5.29)

which are indeed the Hamiltonians for the inverted and simple 4D harmonic oscillators.

Hence, the bound and scattering 3D Kepler problems are equivalent to the simple and

inverted 4D harmonic oscillators via the Kustaanheimo-Stiefel map K.

The results of this section, together with the Kepler-Lorentz duality, suggest the

equivalence of the 3D scattering state Kepler problem, 4D inverted harmonic oscilla-

tor, and the relativistic free particle. Although the Kepler-Lorentz duality is, in hind-

sight, more apparent since the two systems share the same symmetry group SO(1, 3),

the equivalence of the 4D inverted harmonic oscillator and relativistic free particle is

more subtle. Along the lines of observations made at the end of Sec. 5.4, studies of

2-dimensional string theory show that a toy version of AdS/CFT correspondence allows

one to recover all of the physics of 2D string theory by considering an equivalent system

of non-interacting fermions in an inverted harmonic potential [26, 27]. Also in the re-

cent years, the study of scattering amplitudes in the twistor framework has yielded many

fruitful insights into the structure of scattering amplitudes in gauge theories and gravity

[28–34]. As Kepler-Lorentz duality can be seen as a classical analogue of AdS5/CFT4

sharing the same isometry/symmetry groups, it remains to be seen whether there exists

some analogous version of the 3-equivalence involving twistors at high energies. The

construction of a dictionary among the quantities in the three systems in a tractable

classical framework may provide insights into such systems.

5.7 Concluding Remarks

In this chapter, we highlighted a few possible directions in which the Kepler-Lorentz

duality can be extended, along with some basic background required for such an investi-

gation. We saw that by extending the symmetry of the Kepler problem from dynamical
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symmetry to conformal symmetry, we were able to treat the positive and negative energy

problems in a unified picture as cross-sections of a greater manifold. The symmetries of

the enlarged phase manifold, along with insights from recent studies of momentum space

symmetries of a toy quantum field theory, allowed us to suggest a possible connection

between the Kepler-Lorentz duality and gauge-gravity duality. We also found that a

cover group of the conformal group, which acts on twistors, provides a natural way to

show that 3D scattering state Kepler problem is equivalent to a 4d inverted harmonic

oscillator.

It is surprising that the Kepler-Lorentz duality contains some qualitative features

that seem to reflect those seen in more fundamental frameworks such as string theory

and twistor theory. We hope that some of the tractable, simple insights gained through

the Kepler-Lorentz duality may find its use in thinking about such theories.
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