Introduction

Results 00000 de Rham moduli

Odds and ends 00000000000000

### Moduli of local systems and flat connections on smooth varieties

#### Tony Pantev

University of Pennsylvania

Gone Fishing, Amherst College March 16-19, 2023

Tony Pantev Betti/de Rham moduli University of Pennsylvania

Image: A matrix

### Outline

#### joint with Bertrand Töen

#### Study the geometry of the moduli of:

- flat connections, or
- local systems

on a smooth non-proper X/k, chark = 0, with a view towards

- Constructing (shifted) Poisson structures, and
- Describing their symplectic leaves.

#### **Motivation**

- X compact oriented topological surface,
- G a complex reductive group.

**Classical story:** Fock-Rosly, Goldman, Guruprasad-Rajan, Guruprasad-Huebschmann-Jeffrey-Weinstein, ...

- The moduli  $M_G(X)$  of  $\rho : \pi_1(X, x) \to G$  has an algebraic Poisson structure;
- The symplectic leaves in  $M_G(X)$  are moduli spaces of  $\rho$  with fixed monodromy at infinity.

**Goal:** Extend these statements to higher dimensional smooth varieties X.

Image: A matrix

### Main results (i)

Results

00000

Fix a field k of chark = 0

**Theorem:** [P-Töen] Let X be a d-dimensional smooth complex algebraic variety and let G be a reductive algebraic group over k. Then

- (1) The derived moduli stack  $Loc_G(X)$  of G-local systems on X has a natural (2-2d)-shifted Poisson structure.
- (2) This shifted Poisson structure admits generalized symplectic leaves. Among those are the derived moduli of G local systems with fixed monodromy at infinity.

### Main results (ii)

#### **Comments:**

- When d = 1 the Poisson structure in (1) specializes to Goldman's Poisson structure on the moduli of representations π<sub>1</sub>(X, x) → G.
- (2) is tricky: need to understand how to fix local monodromies in the derived setting. Subtle issues:
  - can not be seen on t<sub>0</sub>Loc<sub>G</sub>(X) and involves higher homotopy coherences;
  - an additional constraint **strictness** has to be imposed on the local monodromies at infinity.

Image: A matrix

### Main results (iii)

Results

000000

**Theorem:** [P-Töen] Let X be a d-dimensional smooth algebraic variety over k. Then

- (1) The derived moduli stack  $\operatorname{Vect}^{\nabla}(X)$  of flat vector bundles on X has a natural (2 2d)-shifted Poisson structure.
- (2) There is a well defined derived stack of flat bundles Vect<sup>∇</sup>(∂X) on the formal boundary of X. The shifted Poisson structure of (1) is realized as a Lagrangian structure on the restriction map R : Vect<sup>∇</sup>(X) → Vect<sup>∇</sup>(∂X).
- (3) The fiber of R over a flat vector bundle on  $\widehat{\partial}X$  is a derived algebraic space locally of finite presentation.

### Main results (iv)

#### **Comments:**

- The formal boundary ∂X should encode the punctured formal neighborhood of the boundary divisor in a good compactification X ⊂ X.
- Rigid analytic and non-commutative models for ∂X have been considered in [Ben-Bassat-Temkin], [Efimov], [Hennion-Porta-Vezzosi]. Upshot: ∂X has a well defined sheaf theory and a well defined stack Perf(∂X) of perfect complexes.

## Main results (v)

Results

00000

#### Comments:

- The bulk of the work goes into constructing a derived stack Perf<sup>∇</sup>(∂X) of perfect complexes equipped with flat connections on ∂X (studied in depth in [Raskin] for X = A<sup>1</sup>).
- The stacks Vect<sup>∇</sup>(X) and Vect<sup>∇</sup>(∂(X)) are not algebraic but are formally representable at field valued points. This is crucial for defining symplectic, Lagrangian, and Poisson structures.
- The existence of the Lagrangian structure on *R*: Vect<sup>∇</sup>(X) → Vect<sup>∇</sup>(∂X) boils down to Poincaré duality for compactly supported cohomology relative to various derived base schemes.

#### Moduli of local systems (i)

X - finite CW complex;

Results

Stacks of local systems

G - an affine reductive group over k.

**Main object of study:** The moduli stack  $Loc_G(X)$  of

University of Pennsylvania

Image: A match a ma

Image: A matrix

#### Moduli of local systems (i)

X - finite CW complex;

Results

Stacks of local systems

G - an affine reductive group over k.

Main object of study: The moduli stack  $Loc_G(X)$  of *G*-local systems on *X* locally constant principal *G*-bundles on *X* 

University of Pennsylvania

• • • • • • • • • •

#### Moduli of local systems (i)

X - finite CW complex;

Results

Stacks of local systems

G - an affine reductive group over k.

#### Main object of study: The moduli stack $Loc_G(X)$ of *G*-local systems on *X*

University of Pennsylvania

Image: A match a ma

#### Moduli of local systems (ii) Properties:

Results

Stacks of local systems

- $Loc_G(X)$  is a derived Artin stack over k.
- t₀Loc<sub>G</sub>(X) depends only on the fundamental group of X.
   It is the moduli stack of representations of π₁(X, x) into G, i.e.

$$t_0Loc_G(X) = \mathcal{M}_G(X) = \left[ \left. R_G(\pi_1(X, x)) \right/ G \right]$$

Here  $R_G(\pi_1(X, x))$  is the **character scheme** of *X*: the affine *k*-scheme representing the functor

$$\begin{array}{rcl} R_G(\pi_1(X,x)): & \operatorname{commalg}_k & \longrightarrow & \operatorname{Sets}, \\ & A & \longrightarrow & \operatorname{Hom}_{\operatorname{grp}}\left(\pi_1(X,x), \, G(A)\right). \end{array}$$

 de Rham moduli 00000000 Odds and ends

# Moduli of local systems (iii)

#### **Properties:**

Stacks of local systems

Results

■ The stack  $\mathcal{M}_G(X) = t_0 Loc_G(X)$  has a course moduli space which is the affine GIT quotient

$$M_G(X) = R_G(X) / / G,$$

and

$$M_{G}(X)(k) = \begin{pmatrix} \text{conjugacy classes of } \rho : \pi_{1}(X, x) \to G \\ \text{with } \overline{\text{im}(\rho)}\text{-reductive} \end{pmatrix}$$
$$= \begin{pmatrix} \text{iso classes of locally constant } G(k) \\ \text{bundles on } X \end{pmatrix}$$

In general the derived structure on Loc<sub>G</sub>(X) depends on the full homotopy type of X.

### Shifted symplectic structures

#### Recall: [PTVV]

Results

- If F is derived Artin locally f.p. over k we have a complex of closed 2-forms A<sup>2,cl</sup>(F) on F.
- When F = RSpecA, then A<sup>2,cl</sup>(F) corresponds to the module tot<sup>∏</sup>(F<sup>p</sup>(A)[p]).
- An *n*-cocycle ω in the complex A<sup>2,cl</sup>(F) is a closed *n*-shifted 2-form.
- ω is an *n*-shifted symplectic structure if the contraction ω<sup>b</sup> : T<sub>F</sub> → L<sub>F</sub> with the induced element in H<sup>n</sup>(F, ∧<sup>2</sup>L) = H<sup>n</sup>(A<sup>2,cl</sup>(F)) is a quasi-iso.

Image: A math a math

#### **Relative structures**

Let  $f : F \to F'$  be a morphism between derived Artin stacks over k, then

- An (n − 1)-shifted isotropic structure on f is a pair (ω, h), where ω is an n-shifted symplectic structure on F', and h is a homotopy between f\*(ω) and 0 inside the complex A<sup>2,cl</sup>(F).
- An isotropic structure (ω, h) is Lagrangian if moreover the canonical induced morphism h<sup>b</sup> : T<sub>f</sub> → L<sub>F</sub>[n − 1] is a quasi-isomorphism.

**Note:** An (n-1)-shifted Lagrangian structure on  $f: F \rightarrow \text{Spec } k$  is simply an (n-1)-shifted symplectic structure on F.

Image: A matched and A matc



## **Structures** on $Loc_G(X)$ (i)

 $(X, \partial X)$  - compact oriented topological manifold of dim = d G - a reductive algebraic group over k.

#### Theorem:

- (a) [PTVV] If  $\partial X = \emptyset$ , then the derived stack  $Loc_G(X)$  has a (2-d)-shifted symplectic structure which is canonical up to a choice of a non-degenerate element in  $(\text{Sym}^2 \mathfrak{g}^{\vee})^G$
- (b) [Calaque] The restriction map Loc<sub>G</sub>(X) → Loc<sub>G</sub>(∂X) carries a canonical (2 − d)-shifted Lagrangian structure for the 3 − d = 2 − (d − 1)-shifted symplectic structure on the target.

### Structures on $Loc_G(X)$ (ii)

**Note:** When X is a Riemann surface with boundary we recover the symplectic structures on moduli of G-local systems on X with prescribed monodromies at infinity (usually constructed by quasi-Hamiltonian reduction).

Image: A match a ma

Results

### Structures on $Loc_G(X)$ (ii)

**Example:** Suppose  $(X, \partial X)$  is an oriented surface with boundary. Then

- $\partial X$  is a disjoint union of oriented circles, and so  $Loc_G(\partial X) \simeq \prod [G/G]$  where [G/G] denotes the stack quotient of the conjugation action of G on itself.
- The stack Loc<sub>G</sub>(S<sup>1</sup>) = [G/G] carries a canonical 1-shifted symplectic structure.

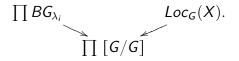
 de Rham moduli

Symplectic and Lagrangian structures

Results

### Structures on $Loc_G(X)$ (iii)

Assigning elements  $\lambda_i \in G$  to each boundary component of X, we get two 0-shifted Lagrangian morphisms



By **[PTVV]** the fiber product of these two maps has a canonical 0-shifted symplectic structure. This fiber product, is the derived stack

$$Loc_{G}(X, \{\lambda_{i}\})$$

of G-local systems on X whose local monodromies at infinity are belong to the conjugacy classes  $\{\mathbb{O}_{\lambda_i}\}$ .

de Rham moduli 00000000

#### Poisson structures

#### Shifted Poisson structures (i)

#### Recall: [CPTVV]

Results

- For F a derived Artin stack/k, can form the dg Lie algebra of *n*-shifted polyvector fields Γ(F, Sym<sub>O</sub>(T<sub>F</sub>[−n−1]))[n+1].
- An *n*-shifted Poisson structure on *F* is a morphism in the ∞-category of graded dg-Lie algebras

$$p: k[-1](2) \longrightarrow \Gamma(F, \mathsf{Sym}_{\mathcal{O}}(\mathbb{T}_{F}[-n-1]))[n+1],$$

where k[-1](2) is the graded dg Lie algebra which is k placed in homological degree 1 and grading degree 2, equipped with the zero Lie bracket.

Betti moduli

de Rham moduli 00000000 Odds and ends

#### Shifted Poisson structures (ii)

**Remark:** [Melani-Safronov,Costello-Rozenblyum,Nuiten] Shifted Poisson structures can always be described in terms of shifted symplectic groupoids (Weinstein program).

University of Pennsylvania

Poisson structures

Betti moduli

de Rham moduli 00000000

#### Shifted Poisson structures (ii)

**Theorem:** [Costello-Rozenblyum] If F is a derived Artin stack the space of *n*-shifted Poisson structure on F is weakly equivalent to the space of equivalence classes of *n*-shifted Lagrangian maps  $F \rightarrow F'$  to formal derived stacks F'.

**Note:**  $[F \rightarrow F'] \sim [F \rightarrow F'']$  if there exists an *n*-shifted Lagrangian map  $F \rightarrow G$  and a commutative diagram

with a and b formally étale and compatible with the Lagrangian structures.

Poisson structures

Betti moduli

de Rham moduli 00000000

#### Shifted Poisson structures (iii)

**Example:** For a compact oriented *d*-dimensional manifold *X* with boundary  $\partial X$ , the restriction map

$$Loc_G(X) \longrightarrow Loc_G(\partial X)$$

is Lagrangian **[Calaque]** and so can be viewed as a (2 - d)-shifted Poisson structure on  $Loc_G(X)$ .

University of Pennsylvania

Image: A match a ma

### Simplectic leaves (i)

Classically a Poisson structure on a smooth variety induces a foliation of the variety by symplectic leaves. For an *n*-shifted Poisson structure on a derived stack F given by a Lagrangian map  $f : F \to F'$ , the symplectic leaves are the appropriately interpreted fibers of f.

**Definition:** A generalized symplectic leaf of F is a derived stack of the form  $F \times_{F'} \Lambda$  for any *n*-shifted Lagrangian morphism  $\Lambda \to F'$ 

**Note:** By **[PTVV]** a generalized symplectic leaf carries a canonical *n*-shifted symplectic structure.

### Simplectic leaves (ii)

**Example:** *X* - a compact oriented surface with boundary. The restriction map

$$Loc_{G}(X) \longrightarrow Loc_{G}(\partial X) = \prod [G/G]$$

carries a 0-shifted Lagrangian structure and thus corresponds to a 0-shifted Poisson structure on  $Loc_G(X)$ .

 $Loc_G(X, \{\lambda_i\})$  - the derived moduli stack of *G*-local systems on *X* with fixed monodromies at infinity - is a generalized symplectic leaf in  $Loc_G(X)$ .

Introduction Results Betti moduli de Rham moduli Odds and e

Structures on Betti spaces

#### Betti spaces - theorems (i) The boundary of a topological space Y is the pro-homotopy type $\partial Y := \lim_{K \subset Y} (Y - K) \in \operatorname{Pro}(\mathbb{T}).$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 めへで

Tony Pantev Betti/de Rham moduli University of Pennsylvania

#### Betti spaces - theorems (i)

The **boundary of a topological space** Y is the pro-homotopy type  $\partial Y := \lim_{K \subseteq Y} (Y - K) \in \operatorname{Pro}(\mathbb{T}).$ 

taken in the  $\infty$ -category  $\mathbb{T}$  of homotopy types and over the opposite category of compact subsets  $K \subset Y$ 

University of Pennsylvania

Image: A matrix

#### Betti spaces - theorems (i)

The **boundary of a topological space** *Y* is the pro-homotopy type  $\partial Y := \lim_{K \subset Y} (Y - K) \in \operatorname{Pro}(\mathbb{T}).$ 

**Note:** The pro-object  $\partial Y$  is in general not constant and can be extremely complicated. However if  $X = Z(\mathbb{C})$  for a smooth *n*-dimensional complex algebraic variety *Z*, we have:

**Proposition:** The pro-object  $\partial X$  is equivalent to a constant pro-object in  $\mathbb{T}$  which has the homotopy type of a compact oriented topological manifold of dimension 2n - 1.

**Remark:**  $\partial X$  has the homotopy type of the biundary of the simple real oriented blowup of a good compactification of Z along its normal crossing boundary.

#### Betti spaces - theorems (ii)

Suppose  $X = Z(\mathbb{C})$  for a smooth *n*-dimensional complex algebraic variety *Z*, then

**Claim:** The canonical map  $\partial X \longrightarrow X$  induces a restriction morphism of derived locally f.p. Artin stacks

$$r: Loc_G(X) \longrightarrow Loc_G(\partial X).$$

which is equipped with a canonical (2-2n)-shifted Lagrangian structure with respect to the canonical shifted symplectic structure on  $Loc_G(\partial X)$ . In particular r can be viewed as a (2-2n)-shifted Poisson structure on  $Loc_G(X)$ .

#### Symplectic leaves - smooth D (i)

Assume Z admits a smooth compactification  $Z \subset \mathfrak{Z}$  with  $D = \mathfrak{Z} - Z = \coprod_i D_i$  a smooth divisor. Then

■  $\partial X = \sim$  (oriented circle bundle over *D*) classified by elements  $\alpha_i \subset H^2(D_i, \mathbb{Z})$ ,  $\alpha_i = c_1(N_{D_i/3})$ .

- Given  $\lambda_i \in G$  with centralizer  $Z_i$ , the group  $S^1$  acts on  $BZ_i$  (via  $\lambda_i$ ) and naturally on [G/G] so that the Lagrangian structure on the map  $BZ_i \rightarrow [G/G]$  is  $S^1$ -equivariant.
- Twisting by  $\alpha_i$  gives a 1-shifted Lagrangian morphism

$$(\dagger_i) \qquad \qquad \alpha_i \widetilde{BZ}_i \longrightarrow \alpha_i [\widetilde{G/G}]$$

of locally constant families of derived Artin stacks over  $D_i$ .



#### Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma\left(D_{i}, \alpha_{i}[\widetilde{G/G}]\right);$$
$$Loc_{Z_{i},\alpha_{i}}(D_{i}) = \Gamma\left(D_{i}, \alpha_{i}\widetilde{BZ_{i}}\right)$$

University of Pennsylvania

• • • • • • • • • •

Odds and ends

### Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

$$\mathsf{Loc}_{\mathsf{G}}(\partial_{i}X) = \mathsf{Map}\left(\partial_{i}X, BG\right) = \Gamma\left(D_{i}, \alpha_{i}[\widetilde{\mathsf{G}/\mathsf{G}}]\right);$$
$$\mathsf{Loc}_{\mathsf{Z}_{i},\alpha_{i}}(D_{i}) = \Gamma\left(D_{i}, \alpha_{i}\widetilde{\mathsf{BZ}_{i}}\right)$$

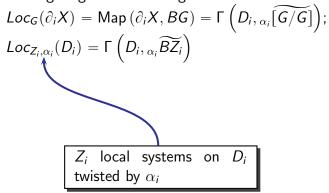
G local systems on the component  $\partial_i X$  of  $\partial X$  mapping tp  $D_i$ 

University of Pennsylvania



#### Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:



Tony Pantev Betti/de Rham moduli University of Pennsylvania

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



#### Symplectic leaves - smooth D (ii)

Passing to global sections gives moduli stacks:

$$Loc_{G}(\partial_{i}X) = Map(\partial_{i}X, BG) = \Gamma\left(D_{i, \alpha_{i}}[\widetilde{G/G}]\right);$$
$$Loc_{Z_{i},\alpha_{i}}(D_{i}) = \Gamma\left(D_{i, \alpha_{i}}\widetilde{BZ_{i}}\right)$$

Since  $D_i$  is a compact topological manifold endowed with a canonical orientation the map  $(\dagger_i)$  induces a (3 - 2n)-shifted Lagrangian morphism of derived Artin stacks

$$r_i: Loc_{Z_i,\alpha_i}(D_i) \longrightarrow Loc_G(\partial_i X).$$

 de Rham moduli 00000000 Odds and ends

Structures on Betti spaces

#### Symplectic leaves - smooth D (iii)

Combining all  $r_i$  we get a (3-2n)-shifted Lagrangian morphism

$$r = \prod_{i} r_{i} : \prod_{i} Loc_{Z_{i},\alpha_{i}}(D_{i}) \longrightarrow \prod_{i} Loc_{G}(\partial_{i}X) = Loc_{G}(\partial X).$$

By the Lagrangian intersection theorem **[PTVV]** the fiber product of derived stacks

$$Loc_{G}(X, \{\lambda_{i}\}) := \left(\prod_{i} Loc_{Z_{i},\alpha_{i}}(D_{i})\right) \underset{Loc_{G}(\partial X)}{\times} Loc_{G}(X)$$

has a canonical (2 - 2n)-shifted symplectic structure.

University of Pennsylvania



#### Symplectic leaves - smooth D (iv)

By construction

- Loc<sub>G</sub>(X, {λ<sub>i</sub>}) is the derived stack of G-local systems on X whose local monodromy around D<sub>i</sub> is fixed to be in the conjugacy class O<sub>λi</sub> of λ<sub>i</sub>.
- The natural map

$$Loc_G(X, \{\lambda_i\}) \longrightarrow Loc_G(X)$$

realizes  $Loc_G(X, \{\lambda_i\})$  as a generalized symplectic leaf of the (2 - 2n)-shifted Poisson structure on  $Loc_G(X)$ .

This proves part (2) of the Main theorem in the Betti setting.

Image: A matrix



#### Symplectic leaves - two components (i)

Assume  $D = \Im - Z = D_1 \cup D_2$  has two smooth irreducible components meeting transversally at a smooth  $D_{12}$ . Then

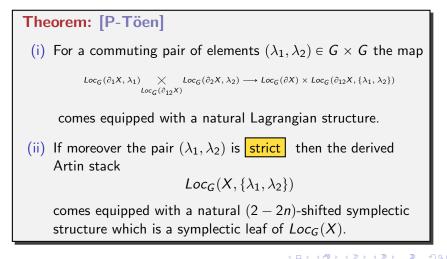
$$\partial X \simeq \partial_1 X \prod_{\partial_{12} X} \partial_2 X.$$

where  $\partial_i X$  is an oriented circle bundle over  $D_i^o = D_i - D_{12}$ , and  $\partial_{12} X$  is an oriented  $S^1 \times S^1$ -bundle over  $D_{12}$ .

**Note:** Each  $\partial_i X$  has the homotopy type of an oriented compact manifold of dimension 2n - 1 with boundary canonically equivalent to  $\partial_{12}X$ .

Image: A math a math

## Symplectic leaves - two components (ii)





### Perfect complexes with flat connections (i)

Suppose X is a smooth variety over k, and let  $X_{DR}$  be the de Rham functor of X, i.e. the (discrete, underived) stack

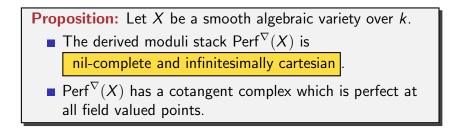
 $\begin{array}{rl} X_{DR}: & \operatorname{cdga}_k^{\leqslant 0} \longrightarrow \operatorname{Sets} \subset \operatorname{SSets} \\ & A \longrightarrow X \left( \operatorname{Spec} \left( A_{\operatorname{red}} \right) \right) \end{array} \\ & \text{The derived stack of perfect complexes with flat connections on } X \text{ is by definition} \end{array}$ 

$$\mathsf{Perf}^\nabla(X) = \mathsf{Map}_{\mathsf{dSt}_k}(X_{\mathit{DR}},\mathsf{Perf})$$

Tony Pantev Betti/de Rham moduli University of Pennsylvania

## Perfect complexes with flat connections (ii)

If X is not proper  $\operatorname{Perf}^{\nabla}(X)$  is not representable. However, since X is a finite colimit of affine k-schemes and  $\operatorname{Perf}^{\nabla}(X)$  is a mapping stack one checks that the stack  $\operatorname{Perf}^{\nabla}(X)$  has good infinitesimal properties:



• • • • • • • • • • •

University of Pennsylvania

# The formal boundary (i)

Let  $\mathfrak{X} \supset X$  be a good compactification:  $\mathfrak{X}$  is smooth and proper over k, and  $D = \mathfrak{X} - X$  is a simple normal crossings divisor. For an étale map u: Spec  $A \rightarrow \mathfrak{X}$  set

$$I = \text{the ideal of } u^*D \subset \text{Spec } A;$$

$$A = \lim_{n} A/I^{n};$$

 $\widehat{\mathfrak{X}}_{D}$  - the formal completion of  $\mathfrak{X}$  along D;

and define derived stacks  $\operatorname{Perf}(\widehat{\mathfrak{X}}_D)$  and  $\operatorname{Perf}(\widehat{\partial}X)$  whose points over a derived affine scheme  $S = \operatorname{RSpec}(B)$  are

$$\operatorname{Perf}\left(\widehat{\mathfrak{X}_{D}}\right)(S) = \lim_{\substack{Spec \ A \to \mathfrak{X}}} \operatorname{Perf}(\operatorname{Spec}\widehat{A \otimes B}),$$
$$\operatorname{Perf}(\widehat{\partial}X)(S) = \lim_{\substack{Spec \ A \to \mathfrak{X}}} \operatorname{Perf}(\operatorname{Spec}\widehat{A \otimes B} - V(I))$$

# The formal boundary (ii)

**Proposition:** [BeTe],[Ef],[HePoVe] The *k*-linear dg category of global points  $Perf(\partial X)(k)$  is independent of the choice of a good compactification  $X \subset \mathfrak{X}$ .

**Note:** The proof relies on the rigid tubular descent of [BeTe] which only works for smooth varieties. It is unknown if  $Perf(\widehat{\partial}X)(S)$  is independent of  $\mathfrak{X}$  for a general affine derived scheme S (even for a singular affine scheme S).

# The formal boundary (iii)

**Remedy:** Work with extendable perfect complexes. Consider

$$\operatorname{\mathsf{Perf}}^{\operatorname{\mathsf{ex}}}(\widehat{\partial}X) \subset \operatorname{\mathsf{Perf}}(\widehat{\partial}X)$$

defined as the Karoubian image of the map of  $\infty$ -stacks  $\operatorname{Perf}(\widehat{\mathfrak{X}}_D) \to \operatorname{Perf}(\widehat{\partial}X).$ 

#### Proposition: [Efimov, P-Töen]

(a) For any S ∈ dAff<sub>k</sub> the dg category Perf<sup>ex</sup>(∂X)(S) of extendable perfect complexes is independent of the choice of X ⊂ X.

(b) The derived stack  $\operatorname{Perf}^{\operatorname{ex}}(\widehat{\partial}X)$  is independent of  $\mathfrak{X}$ .

• • • • • • • • • • • •

# The formal boundary (iv)

For an étale map u : Spec  $A \rightarrow \mathfrak{X}$  and an affine derived scheme  $S = \operatorname{RSpec} B$  set

I = the ideal of  $u^*D \subset \operatorname{Spec} A$ ;

 $\widehat{DR}_B(A) = \lim_n DR(A/I^n \otimes_k B)$  as a *B*-linear mixed cdga;

 $\widehat{\mathsf{DR}}^o_B(A)$  -  $\widehat{\mathsf{DR}}_B(A)$  with the local equation of D inverted.

#### **Definition:**

(a)  $\operatorname{Perf}^{\nabla}(\widehat{\partial}X)(S)$  is the dg category of sheaves of graded mixed  $\widehat{\operatorname{DR}}^o_B(A)$ -dg modules which are locally free of weight zero.

(b) The derived pre-stack  $\operatorname{Perf}^{\nabla, ex}(\widehat{\partial}X)$  is the fiber product  $\operatorname{Perf}^{\nabla}(\widehat{\partial}X) \times_{\operatorname{Perf}(\widehat{\partial}X)} \operatorname{Perf}^{ex}(\widehat{\partial}X).$ 

de Rham moduli

# The formal boundary (v)

#### **Proposition:**

Stacks of flat bundles

Results

- (a) The derived pre-stacks  $\operatorname{Perf}^{\nabla}(\widehat{\partial}X)$  and  $\operatorname{Perf}^{\nabla,ex}(\widehat{\partial}X)$  are stacks.
- (b) The derived stack  $\operatorname{Perf}^{\nabla, ex}(\widehat{\partial}X)$  is independent of  $\mathfrak{X}$ .
- (c) The restriction map  $R : \operatorname{Perf}^{\nabla}(X) \to \operatorname{Perf}^{\nabla}(\widehat{\partial}X)$  is a map of derived stacks which factors through  $\operatorname{Perf}^{\nabla, ex}(\widehat{\partial}X)$ .
- (d)  $\operatorname{Perf}^{\nabla}(\widehat{\partial}X)$  is nil-complete, inf-cartesian, and has a cotangent complex which is perfect over all field valued points.

Image: A match a ma

#### Poisson structures

#### **Poisson structures**

#### Theorem:

- (i) The morphism  $R : \operatorname{Perf}^{\nabla}(X) \to \operatorname{Perf}^{\nabla}(\widehat{\partial}X)$  carries a natural (2-2n)-shifted isotropic structure.
- (ii) The isotropic structure in (i) is Lagrangian over all field valued points.

• • • • • • • • • •

#### Derived stacks of local systems

# Derived moduli of local systems (i)

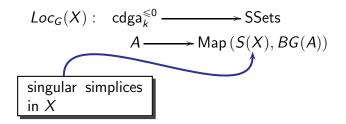
The derived stack of G local systems can be viewed as an  $\infty\text{-}\mathsf{functor}$ 

$$Loc_G(X) : \operatorname{cdga}_k^{\leq 0} \longrightarrow \operatorname{SSets} A \longrightarrow \operatorname{Map} (S(X), BG(A))$$

University of Pennsylvania

# Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an  $\infty\text{-functor}$ 



University of Pennsylvania

Image: A match a ma

Image: A matrix

University of Pennsylvania

# Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an  $\infty\text{-}\mathsf{functor}$ 

$$Loc_{G}(X)$$
:  $cdga_{k}^{\leq 0} \longrightarrow SSets$   
 $A \longrightarrow Map(S(X), BG(A))$   
simplicial set of  
 $A$ -points of  $BG$ 

Image: A match a ma

# Derived moduli of local systems (i)

The derived stack of G local systems can be viewed as an  $\infty\text{-}\mathsf{functor}$ 

$$Loc_G(X) : \operatorname{cdga}_k^{\leq 0} \longrightarrow \operatorname{SSets} A \longrightarrow \operatorname{Map} (S(X), BG(A))$$

**Note:**  $Loc_G(X)$  admits a nice quotient presentation.

Tony Pantev Betti/de Rham moduli University of Pennsylvania

## Derived moduli of local systems (ii)

Choose  $\Gamma_{\bullet}$  - a free similcial model of the loop group  $\Omega_x(X)$  of loops based at  $x \in X$ .

Image: A match a ma

Choose  $\Gamma_{\bullet}$  - a free similcial model of the loop group  $\Omega_x(X)$  of loops based at  $x \in X$ .

**Note:**  $B\Gamma_{\bullet}$  is a simplicial free resolution of the pointed homotpy type (X, x).

Image: A match a ma

## Derived moduli of local systems (ii)

Choose  $\Gamma_{\bullet}$  - a free similcial model of the loop group  $\Omega_x(X)$  of loops based at  $x \in X$ .

Then:

- **R**<sub>G</sub>( $\Gamma_{\bullet}$ ) is a cosimplicial affine *k*-scheme;
- $\Gamma(R_G(\Gamma_{\bullet}), \mathcal{O})$  is a commuttative simplicial *k*-algebra.

Passing to normalized chains gives a  $\mathscr{A}_G(X) \in \operatorname{cdga}_k^{\leq 0}$  which up to quasi-isomorphism is independent of the choice of the resolution  $\Gamma_{\bullet}$ .

Image: A match a ma

# Derived moduli of local systems (iii)

The conjugation action of G on  $R(\Gamma_{\bullet})$  gives an action of G on the cdga  $\mathscr{A}_{G}(X)$  and hence on the derived affine scheme RSpec  $\mathscr{A}_{G}(X)$ . The quotient stack

$$Loc_{G}(X) = [\operatorname{\mathsf{RSpec}} \mathscr{A}_{G}(X) / G]$$

is the derived stack of *G*-local systems on *X*.



Image: A matrix



# **Orientations and structures (i)**

**Key observation:** Lagrangian structures on a map between moduli of local systems exist always in the presence of relative orientations.

University of Pennsylvania



## **Orientations and structures (i)**

 $f: Y \to X$  - a continuous map between finite CW complexes;  $C^{\bullet}(Y, X)$  - the cone of the pull-back map  $f^*C^{\bullet}(X) \to C^{\bullet}(Y)$ on singular cochains with coefficients in k.

An orientation of dimension d on f is a morphism of complexes or :  $C^{\bullet}(Y, X) \longrightarrow k[1 - d]$ , which is non-degenerate in the sense that the pairing

$$C^{\bullet}(X) \otimes C^{\bullet}(X, Y) \longrightarrow k[1-d]$$

given by the composition of or with the cup product on C(X) is non-degenerate on cohomology and induces a quasi-isomorphism  $C^{\bullet}(Y, X) \simeq C^{\bullet}(X)^{\vee}[1-d].$ 



# **Orientations and structures (ii)**

 $f: Y \rightarrow X$  - continuous map of CW complexes equipped with a relative orientation of dimension d.

G - a reductive algebraic group over k.

**Theorem:** [Calaque,Brav-Dyckerhoff] The pullback map on the derived stacks of local systems

$$f^* : Loc_G(X) \longrightarrow Loc_G(Y)$$

carries a (2-d)-shifted Lagrangian structure which is canonical up to a choice of a non-degenerate element in Sym<sup>2</sup>( $\mathfrak{g}^{\vee}$ )<sup>G</sup>.

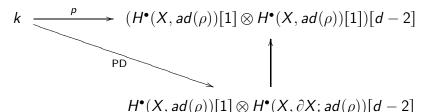
University of Pennsylvania

### **Poisson bivectors**

For a G-local system  $\rho \in Loc_G(X)$  we have

$$\blacksquare \ \mathbb{T}_{\operatorname{Loc}_{G}(X),\rho} = H^{\bullet}(X,\operatorname{ad}(\rho))[1]$$

■ the bivector p underlying the (2 − d)-shifted Poisson structure on Loc<sub>G</sub>(X) is given by



University of Pennsylvania

# **Obstructions** - smooth *D* (i)

Results

Obstructions

**Caution:** The derived stack  $Loc_{Z_i,\alpha_i}(D_i)$  may be empty. Indeed:

- $Loc_{Z_i,\alpha_i}(D_i)(k)$  is the groupoid of *G*-local systems on  $\partial_i X$  whose local monodromy around  $D_i$  is conjugate to  $\lambda_i$ .
- A Z<sub>i</sub>/Z(Z<sub>i</sub>)-local system on D<sub>i</sub> determines a class in H<sup>2</sup>(D<sub>i</sub>, Z(Z<sub>i</sub>)), which is the obstruction to lifting it to a Z<sub>i</sub>-local system.
- For  $Loc_{Z_i,\alpha_i}(D_i)(k)$  to be non-empty one needs to have a  $Z_i/Z(Z_i)$ -local system on  $D_i$  whose obstruction class matches with the image of  $\alpha_i$  under the map  $H^2(D_i, \mathbb{Z}) \to H^2(D_i, Z(Z_i))$  given by  $\lambda_i : \mathbb{Z} \to Z(Z_i)$ .

Image: A match a ma

de Rham moduli 00000000

# **Obstructions** - smooth *D* (ii)

Results

Obstructions

**Example:** If G is semisimple, k is algebraically closed, and  $\lambda_i$  is a regular semi-simple element, then  $Z_i$  is a maximal torus in G and hence the image of  $\alpha_i$  in  $H^2(D_i, Z_i)$  is zero. If  $\lambda_i$  is of infinite order, this forces  $\alpha_i$  to be a torsion class in  $H^2(D_i, \mathbb{Z})$ .



University of Pennsylvania



#### **Obstructions** - two components (i)

**Definition:** A pair of commuting elements  $(\lambda_1, \lambda_2) \in G \times G$  is called **strict** if the morphism

$$BZ_{12} \longrightarrow [Z_1/Z_1] \times_{[G * G/G]} [Z_2/Z_2]$$

is Lagrangian (for its canonical isotropic structure).

Here  $G * G \subset G \times G$  is the commuting variety, and  $Z_{12}$  is the centralizer of the pair  $(\lambda_1, \lambda_2)$ .

Note: Strictness is a group theoretic property.

#### **Obstructions - two components (ii)**

**Proposition:** Let  $(\lambda_1, \lambda_2)$  be a commuting pair of elements in *G*, and  $u := \text{Id} - \text{ad}(\lambda_1)$  and  $v := \text{Id} - \text{ad}(\lambda_2)$  be the corresponding endormorphisms of  $\mathfrak{g}$ . Then the pair  $(\lambda_1, \lambda_2)$  is strict if and only *u* is strict with respect to the kernel of *v*, i.e. if and only if

$$\mathsf{Im}(v_{|\ker(u)}) = \mathsf{Im}(v) \cap \ker(u).$$

**Note:** Stricness is symmetric by definition so equivalently  $(\lambda_1, \lambda_2)$  is strict if and only if v is strict with respect to the kernel of u.

• • • • • • • • • •

## **Obstructions** - two components (iii)

#### **Corollary:**

Tony Pantev

- If at least one of the  $\lambda_i$  is semi-simple then the pair  $(\lambda_1, \lambda_2)$  is strict.
- If (u, v) form a principal nilpotent pair [Ginzburg], then the pair  $(\lambda_1, \lambda_2)$  is strict.

**Caution:** Strictness is a non-trivial condition: if  $\lambda$  is any non-trivial unipotent element in G, then the pair  $(\lambda, \lambda)$  is not strict. In this case u is a non-zero nilpotent endomorphism of g and thus ker(u)  $\cap$  Im(u)  $\neq$  0, but Im(u<sub>ker(u)</sub>) = 0).

#### Infinitesimal theory

# Infinitesimal properties (i)

**Note:** These are the properties neeeded for applying the Artin-Lurie representability theorem. Recall that for any  $B \in \operatorname{cdga}_{k}^{\leq 0}$ , any connective *B*-module *M*, and any k-linear derivation  $d: B \to M[1]$ , the square zero extension  $B \oplus_d M$  of B by M is defined by the cartesian square of cdga:

$$\begin{array}{ccc} B \oplus_d M \longrightarrow B \\ \downarrow & \downarrow^0 \\ B \xrightarrow[d]{} B \oplus M[1] \end{array}$$

where 0 denotes the natural inclusion of B as a direct factor in the trivial square zero extension  $B \oplus M[1]$ .

