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Generalized Kähler geometry

In this talk, GK structures will be understood under the framework of
Hitchin’s generalized geometry.

Definition

Let E be a real exact Courant algebroid over M. A GK structure is a pair of
commuting GC structures J1, J2 such that the composition G = −J1J2 is
positive definite.

The endomorphism G is called a generalized metric which is equivalent to
a Riemannian metric g on M and an isotropic splitting of E .

First example of GK structures: Kähler structures, where J1, J2 are given
by the symplectic and complex structures respectively and G is given by
the Riemannian metric.



Generalized Kähler geometry

In this talk, GK structures will be understood under the framework of
Hitchin’s generalized geometry.

Definition

Let E be a real exact Courant algebroid over M. A GK structure is a pair of
commuting GC structures J1, J2 such that the composition G = −J1J2 is
positive definite.

The endomorphism G is called a generalized metric which is equivalent to
a Riemannian metric g on M and an isotropic splitting of E .

First example of GK structures: Kähler structures, where J1, J2 are given
by the symplectic and complex structures respectively and G is given by
the Riemannian metric.



Generalized Kähler geometry

In this talk, GK structures will be understood under the framework of
Hitchin’s generalized geometry.

Definition

Let E be a real exact Courant algebroid over M. A GK structure is a pair of
commuting GC structures J1, J2 such that the composition G = −J1J2 is
positive definite.

The endomorphism G is called a generalized metric which is equivalent to
a Riemannian metric g on M and an isotropic splitting of E .

First example of GK structures: Kähler structures, where J1, J2 are given
by the symplectic and complex structures respectively and G is given by
the Riemannian metric.



Generalized Kähler geometry

In this talk, GK structures will be understood under the framework of
Hitchin’s generalized geometry.

Definition

Let E be a real exact Courant algebroid over M. A GK structure is a pair of
commuting GC structures J1, J2 such that the composition G = −J1J2 is
positive definite.

The endomorphism G is called a generalized metric which is equivalent to
a Riemannian metric g on M and an isotropic splitting of E .

First example of GK structures: Kähler structures, where J1, J2 are given
by the symplectic and complex structures respectively and G is given by
the Riemannian metric.



Reduction

It turns out that there is rich geometry hidden in the simple definition.
First of all, there are holomorphic structures.

We have a decomposition of the Courant algebrid as eigenspaces of J1 and
J2:

E ⊗ C = ℓ+ ⊕ ℓ̄+ ⊕ ℓ− ⊕ ℓ̄−,

where ℓ+ = L1 ∩ L2 and ℓ− = L1 ∩ L̄2. where L1 and L2 are the +i
eigenbundles of J1 and J2 respectively.
Then ρ(ℓ+) and ρ(ℓ−) define complex structures I± such that
ρ(ℓ±) = T 10

± .

Moreover, we may reduce E with respect to ℓ̄± and obtain holomorphic
Courant algebroids E± via Courant reduction. As bundles, we simply take

E± = ℓ̄⊥±/ℓ̄± ∼= ℓ∓ ⊕ ℓ̄∓.

We may reduce the complex Dirac structures of J1 and J2 as well and
obtain

A+ = (L̄1)ℓ̄+ , A− = (L̄1)ℓ̄− , B+ = (L̄2)ℓ̄+ , B− = (L2)ℓ̄−

A+
∼= ℓ̄−, B+

∼= ℓ−, A− ∼= ℓ̄+, B− ∼= ℓ+.



The infinitesimal data

In summary, we reduce the generalized complex structures, which a priori
are only smooth and obtain holomorphic Manin triples, i.e.
complementary Dirac structures:

A± ⊕ B± = E±.

As the reduction are carried out separately, we also need to understand the
connections between the + side and the − side.
We may use the matched pair constructions, and recover the GC
structures. For example, consider

A+ ⊕ T 01
+ , A− ⊕ T 01

−

which are both isomorphic to L̄1. But in order to phrase the compatibility
condition, we need a more accurate result.

Theorem

The matched pairs of A+ and A− are gauge equivalent and the matched pairs
of B+ and B− are gauge equivalent.

LA+ = e−iF1LA− , LB+ = e−iF2LB−
,

where F1,F2 are real 2-forms which are not necessarily closed.
Conversely, if (A±,B±) are holomorphic Manin triples satisfying the above
gauge equivalences then they define a GK structure (with a possibly degenerate
metric).



Symplectic type

The gauge equivalences

LA+ = e−iF1LA− , LB+ = e−iF2LB−

are difficult to study in general. However, a simpler case, the so called
symplectic type has been studied extensively in the literature.

We assume that one of the GC structures is of symplectic type, i.e. gauge
equivalent to a symplectic structure. Then the holomorphic Manin triples
simplify to

Gr((2i)−1σ±)⊕ T 10
± = E±,

where σ± are holomorphic Poisson structures with respect to I±.
The gauge equivalences then simplify to

Lσ+ = eFLσ− .

The equation can be written in terms of tensors as follows.

I+ − I− = QF , I ∗−F + FI+ = 0,

where Q = −4Im(σ+) = −4Im(σ−).



The idea of transgression

The above equation can be simplified into a quadratic equation for F :

I ∗−F + FI− + FQF = 0.

In general, this is still a difficult equation. But what if Q is invertible?

Assume that the holomorphic Poisson structures σ+ and σ− are
nondegenerate. Let ω± = −σ−1

± . Then the gauge equivalence reduces to a
simple-looking equation:

ω+ − ω− = F .

To implement the above simplifications, the main idea will be to transgress
the structures via integration of infinitesimal structures, e.g. integration of
Lie algebroids into Lie groupoids.

The gauge equation ω+ − ω− = F will then be understood as Morita
equivalence between the global structures. In order to encode F , a
bisection will be needed.



Symplectic type

An application of this idea is the following theorem of F. Bischoff, M.
Guatieri, and M. Zabzine.

Theorem (F. Bischoff, M.Gualtieri, M. Zabzine)

A symplectic type GK is equivalent to a holomorphic symplectic Morita
equivalence with an imaginary Lagrangian bisection between symplectic
groupoids.

We remark that the holomorphic symplectic Morita equivalence induces
the underlying holomorphic data of the GK structure and the
Im-Lagrangian bisection, which is a smooth data induces the other
underlying smooth data of the GK structure, e.g. the metric g .
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The holomorphic Poisson structures σ± are induced from G±. The gauge
F is the pullback of Ω to L.



Donaldson’s observation

As an example, let (M,F , I ) be a Kähler structure. Then σ = 0. The
holomorphic symplectic groupoid G− is (T ∗M, ω0) ⇒ M. The Morita
equivalence is

Z = (T ∗M, ω0 + π∗F ).

The bisection L is the zero section of T ∗M and induces the Kähler form F
simply by pullback of ω0 + π∗F to L.



Symplectic double groupoids

To deal with the general case, we inevitably need to consider integration of
Lie bialgebroids. A general result in Poisson geometry due to K.
Mackenzie, A. Weinstein, P. Xu is that a Lie bialgebroid should be
integrated into a symplectic double groupoids D whose side groupoids GA

and GB are Poisson groupoids in duality and induce the underlying Lie
bialgebroids:

D //
//

�� ��

GA

�� ��

GB //
// X

So we let GA± and GB± be the holomorphic Poisson groupoids integrating
the Lie bialgebroids (A±,B±) and (B±,A±) respectively.

The gauge equivalences

LA+ = e−iF1LA− , LB+ = e−iF2LB−

then transgress to symplectic type GK structures on the Poisson groupoids
GA± and GB± . Then we can apply the above theorem.



Symplectic double groupoids

For example, taking care of the first gauge equivalence, we obtain the
following holomorphic symplectic Morita equivalence for symplectic double
groupoids:
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We remark that here the action of the double groupoid is horizontal
meaning that D± ⇒ GB± act on Z1 and GA± act on Z0.



Theorem (Alvarez, Gualtieri, J.)

A GK structure is equivalent to a pair of holomorphic symplectic Morita
equivalences between symplectic double groupoids D+,D− and D+,D− with
related multiplicative Re-symplectic and Im-Lagrangian bisections LZ and LW .
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Revisit the symplectic type

Let us return to the symplectic type and see how the above theorem fits
into the previous theorem. Half of the diagram is

G+ × G ′
+
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where X ′ means taking the opposite Poisson structure. We see that the
base Morita equivalence with Lagrangian bisection is the one in the
previous theorem and the upper one is (Z × Z ,Ω×−Ω) induced by
doubling. The pullback of Ω×−Ω to the bisection is the multiplicative
symplectic form F ×−F on X ×X ⇒ X which differentiates to π1 = F−1,
which in this particular case, can be used to recover the GK structure.



We may also consider the other half of the diagram.
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where X means taking the conjugate complex structure.
The holomorphic Morita equivalence between (G

′
+,−Ω+) and (G−,Ω−) is

simply the product (G− × G+,Ω− × Ω+). The Lagrangian bisection is the
diagonal embedding of the underlying smooth groupoid of G±. The
pullback of Ω− ×Ω+ to the bisection is the symplectic form 2ReΩ− + δ∗F
which differentiates to π2, which is not enough to recover the GK
structure.

We remark that from this example, we see that in general one Lagrangian
bisection is not enough to recover the entire GK structure.


